• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

MrGiovanni/Active-Learning: Official Matlab demo for AIFT - CVPR 2017 & Medi ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

MrGiovanni/Active-Learning

开源软件地址(OpenSource Url):

https://github.com/MrGiovanni/Active-Learning

开源编程语言(OpenSource Language):

MATLAB 100.0%

开源软件介绍(OpenSource Introduction):

Paper

This repository provides the official Matlab demo for the following paper:

Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
Zongwei Zhou1, Jae Shin1, Lei Zhang1, Suryakanth Gurudu2, Michael B. Gotway2, and Jianming Liang1
1 Arizona State University, 2 Mayo Clinic
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
paper | code | slides | poster

Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts
Zongwei Zhou1, Jae Shin1, Suryakanth Gurudu2, Michael B. Gotway2, and Jianming Liang1
1 Arizona State University, 2 Mayo Clinic
Medical Image Analysis (MedIA)
paper | code | slides

Citation

If you use this code for your research, please cite our paper:

@inproceedings{zhou2017fine,
  title={Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally},
  author={Zhou, Zongwei and Shin, Jae and Zhang, Lei and Gurudu, Suryakanth and Gotway, Michael and Liang, Jianming},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={7340--7351},
  year={2017},
  url = {http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Fine-Tuning_Convolutional_Neural_CVPR_2017_paper.pdf}
}

@article{zhou2018active,
  title={Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts},
  author={Zhou, Zongwei and Shin, Jae Y and Gurudu, Suryakanth R and Gotway, Michael B and Liang, Jianming},
  journal={arXiv preprint arXiv:1802.00912},
  year={2018}
}

@phdthesis{zhou2021towards,
  title={Towards Annotation-Efficient Deep Learning for Computer-Aided Diagnosis},
  author={Zhou, Zongwei},
  year={2021},
  school={Arizona State University}
}

Acknowledgement

This research has been supported partially by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant, and partially by NIH under Award Number R01HL128785. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. This is a patent-pending technology.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap