• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

charlienash/nricp: Matlab implementation of non-rigid iterative closest point

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

charlienash/nricp

开源软件地址(OpenSource Url):

https://github.com/charlienash/nricp

开源编程语言(OpenSource Language):

MATLAB 100.0%

开源软件介绍(OpenSource Introduction):

nricp - Non-rigid iterative closest point

https://github.com/charlienash/nricp

![face demo] (https://github.com/charlienash/nricp/blob/master/demos/faceDemo.jpg)

nricp is a MATLAB implementation of a non-rigid variant of the iterative closest point algorithm. It can be used to register 3D surfaces or point-clouds. The method is described in the following paper:

'Optimal Step Nonrigid ICP Algorithms for Surface Registration', Amberg, Romandhani and Vetter, CVPR, 2007.

Features:

  • Non-rigid and local deformations of a template surface or point cloud.
  • Iterative stiffness reduction allows for global intitial transformations that become increasingly localised.
  • Optional initial rigid registration using standard iterative closest point.
  • Optional bi-directional distance metric which encourages surface deformations to cover more of the target surface
  • Handles missing data in the target surface by ignoring correspondences with points on target edges.

![missing data demo] (https://github.com/charlienash/nricp/blob/master/demos/faceDemoMissing.jpg)

Dependencies

Requires:

Installation

Download the nricp directory and the dependencies and add them to your MATLAB path.

Attribution

If you use this implementation in your academic projects, please cite the paper by Amberg et al:

@inproceedings{amberg2007optimal,
  title={Optimal step nonrigid icp algorithms for surface registration},
  author={Amberg, Brian and Romdhani, Sami and Vetter, Thomas},
  booktitle={Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on},
  pages={1--8},
  year={2007},
  organization={IEEE}
}

Contact

[email protected]




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap