• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Xiaoyang-Rebecca/PatternRecognition_Matlab: Feature reduction projections and cl ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Xiaoyang-Rebecca/PatternRecognition_Matlab

开源软件地址(OpenSource Url):

https://github.com/Xiaoyang-Rebecca/PatternRecognition_Matlab

开源编程语言(OpenSource Language):

MATLAB 97.9%

开源软件介绍(OpenSource Introduction):

PatternRecognition_Matlab

Abstract

Feature reduction projections and classifier models are learned by training dataset and applied to classify testing dataset. A few approaches of feature reduction have been compared in this paper: principle component analysis (PCA), linear discriminant analysis (LDA) and their kernel methods (KPCA,KLDA). Correspondingly, a few approaches of classification algorithm are implemented: Support Vector Machine (SVM), Gaussian Quadratic Maximum Likelihood and K-nearest neighbors (KNN) and Gaussian Mixture Model(GMM).

Conclusion

Our experiments showed that SVM was the most robust method to increase dimensional space, and that SVM and LDA were the most sensitive to noise.

Documentations

Preprint report

Cite our paper

@article
{li2016comparison,
  title={Comparison of Feature Reduction Approaches and Classification Approaches for Pattern Recognition},
  author={Li, Xiaoyang},
  journal={Available at SSRN 3659735},
  year={2016}
}

Code Run Instruction

Input data : data

Main function : mainFCT.m

About author

Porfolios




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap