Collection of MATLAB implementations of Generative Adversarial Networks (GANs) suggested in research papers. This repository is greatly inspired by eriklindernoren's repositories Keras-GAN and PyTorch-GAN, and contains codes to investigate different architectures of GAN models.
Configuration
To run the following codes, users should have the following packages,
MATLAB 2019b
Deep Learning Toolbox
Parallel Computing Toolbox (optional for GPU usage)
Y. LeCun and C. Cortes, “MNIST handwritten digitdatabase,” 2010. [MNIST]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andL. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” inCVPR09, 2009. [Apple2Orange (ImageNet)]
R. Tyleček and R. Šára, “Spatial pattern templates forrecognition of objects with regular structure,” inProc.GCPR, (Saarbrucken, Germany), 2013. [Facade]
Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learn-ing face attributes in the wild,” inProceedings of In-ternational Conference on Computer Vision (ICCV),December 2015. [CelebA]
Goodfellow, Ian J. et al. “Generative Adversarial Networks.” ArXiv abs/1406.2661 (2014): n. pag. (GAN)
Radford, Alec et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.” CoRR abs/1511.06434 (2015): n. pag. (DCGAN)
Denton, Emily L. et al. “Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.” ArXiv abs/1611.06430 (2017): n. pag. (CGAN)
Odena, Augustus et al. “Conditional Image Synthesis with Auxiliary Classifier GANs.” ICML (2016). (ACGAN)
Chen, Xi et al. “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.” NIPS (2016). (InfoGAN)
Makhzani, Alireza et al. “Adversarial Autoencoders.” ArXiv abs/1511.05644 (2015): n. pag. (AAE)
Isola, Phillip et al. “Image-to-Image Translation with Conditional Adversarial Networks.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016): 5967-5976. (Pix2Pix)
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpairedimage-to-image translation using cycle-consistent ad-versarial networks,” 2017. (CycleGAN)
Arjovsky, Martín et al. “Wasserstein GAN.” ArXiv abs/1701.07875 (2017): n. pag. (WGAN)
Odena, Augustus. “Semi-Supervised Learning with Generative Adversarial Networks.” ArXiv abs/1606.01583 (2016): n. pag. (SGAN)
请发表评论