• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

TingNie/Coursera-ML-using-matlab-python: coursera吴恩达机器学习课程作业自写Pytho ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

TingNie/Coursera-ML-using-matlab-python

开源软件地址(OpenSource Url):

https://github.com/TingNie/Coursera-ML-using-matlab-python

开源编程语言(OpenSource Language):

Jupyter Notebook 86.3%

开源软件介绍(OpenSource Introduction):

ML-code-using-matlab-and-python

coursera吴恩达机器学习课程作业自写Python2.7版本,使用jupyter notebook实现,使代码更有层次感,可读性强。

本repository实现算法包括如下:

线性回归: linear_regression.ipynb

多元线性回归:linear_multiple.ipynb

逻辑回归:logic_regression.ipynb

正则化用于逻辑回归: logic_regularization.ipynb

模型诊断+学习曲线: learnCurve.ipynb

一对多分类模型:oneVSall.ipynb

神经网络模型:neuralNetwork.ipynb

SVM分类器:svm.ipynb

kmeans聚类:kmeans.ipynb

pca降维:pca.ipynb

高斯分布用于异常检测:anomaly_detection.ipynb

协调过滤推荐算法:Collaborative_Filter.ipynb

PS:网上其他参考资料分享:

1.课程作业原版是MATLAB版本(填空式编码):对应 machine-learning-ex1——ex8 文件夹

2.kaleko整理的jupyter notebooks版本:对应 coursera_ml_ipynb 文件夹

3.mstampfer对照原版作业格式整理的Python版本,可以尝试自己实现

4.AceCoooool整理的Python版本,有中文注释

5.如果需要了解更多算法知识,本人使用jupyter notebook整理的peter的《机器学习实战》代码

6.本人自写的,关于吴恩达(Andrew Ng)开设的深度学习课程deeplearning.ai的课程答案




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap