• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

mastodon-sc/matlab-mastodon-importer: A MATLAB importer for Mastodon files.

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

mastodon-sc/matlab-mastodon-importer

开源软件地址(OpenSource Url):

https://github.com/mastodon-sc/matlab-mastodon-importer

开源编程语言(OpenSource Language):

MATLAB 100.0%

开源软件介绍(OpenSource Introduction):

Table of Contents

A MATLAB importer for Mastodon files.

This repository contains several MATLAB functions used to import Mastodon files (https://github.com/fiji/TrackMate3). The import procedure is based on directly deserialising the binary files using MATLAB low-level API, and therefore has no dependency.

Running a quick demo.

Run the demo script demo_import_and_plot.m in the demo/ folder.

Installation.

Simply add all the files of the src/ folder to your MATLAB path.

Usage.

The main function is import_mastodon( path/to/your/mastodon/file.mastodon ).

[ G, metadata, tss ] = import_mastodon( source_file );

The data graph.

The data is returned as a MATLAB directed graph already:

>> G

G = 

  digraph with properties:

    Edges: [2981×6 table]
    Nodes: [3087×22 table]

The spots are listed in the Nodes table of the graph. The links are listed in the Edges table.

Everything is imported: the model, the numerical features and the tags:

>> head(G.Nodes)

ans =

  8×22 table

    id      x         y         z       t     c_11       c_12      c_13     c_22     c_23
    __    ______    ______    ______    _    ______    ________    ____    ______    ____

    0     61.362    76.349    55.142    0    22.502     0.91281     0      21.628     0  
    1     113.15    3.2331     67.34    0    35.087      6.6417     0      20.584     0  
    2     35.741    20.075     57.84    0      24.6     -6.5254     0      28.333     0  
    3     79.251    35.248    56.869    0    19.096     0.19479     0      34.124     0  
    4     143.31    95.934    77.957    0    31.404     -1.9327     0      18.281     0  
    5     114.93    97.665    65.717    0    25.358    -0.42869     0      18.027     0  
    6     129.54    98.146    70.754    0    23.942    -0.66575     0      18.076     0  
    7      36.41    50.149    57.431    0    26.004      7.9379     0      25.876     0  
...
 
  c_33      bsrs     label      Fruits          Names       SpotNLinks    SpotTrackID 
 ______    ______    _____    ___________    ___________    __________    ___________ 

 181.48    725.93     '0'     Apple          Mike               1               0     
 82.768    331.07     '1'     Apple          <undefined>        1             105     
 146.87    587.46     ''      Banana         Robert             1             104     
  170.8    683.21     ''      Kiwi           Myriam             1             103     
 122.11    488.43     ''      Kiwi           Assaf              1             102     
 115.41    461.63     ''      <undefined>    <undefined>        1             101     
 86.567    346.27     ''      <undefined>    <undefined>        1             100     
    158    631.99     ''      <undefined>    <undefined>        1              99     

...

The id column corresponds to the Mastodon internal object id. However, the link table follows MATLAB convention. It has a variable called EndNodes made of two columns containing the source and target spots of each link. But the EndNodes values refer to row indices in the spots table, not to the spot ids.

>> head(G.Edges)

ans =

  8×6 table

    EndNodes    id      Fruits          Names       LinkDisplacement    LinkVelocity
    ________    __    ___________    ___________    ________________    ____________

    1     95    0     <undefined>    Chris               1.3555            1.3555   
    2     96    1     Apple          Roy                0.41863           0.41863   
    3     97    2     Banana         <undefined>        0.65284           0.65284   
    4     98    3     Kiwi           <undefined>        0.95254           0.95254   
    5     99    4     <undefined>    <undefined>        0.52254           0.52254   
    6    100    5     <undefined>    <undefined>        0.77146           0.77146   
    7    101    6     <undefined>    <undefined>        0.83214           0.83214   
    8    102    7     <undefined>    Joe                0.71399           0.71399   

The tables store also the physical units of the variables they store:

>> head(G.Edges, 1)

ans =

  1×6 table

    EndNodes    id      Fruits       Names    LinkDisplacement    LinkVelocity
    ________    __    ___________    _____    ________________    ____________

    1    95     0     <undefined>    Chris         1.3555            1.3555   

>> G.Edges.Properties.VariableUnits

ans =

  1×6 cell array

    {0×0 char}    {0×0 char}    {0×0 char}    {0×0 char}    {'um'}    {'um/frame'}

And their description when available:

>> G.Edges.Properties.VariableDescriptions'

ans =

  6×1 cell array

    {0×0 char}
    {0×0 char}
    {0×0 char}
    {0×0 char}
    {'Computes the link displacement in physical units as the distance between the source spot and the target spot.'                                              }
    {'Computes the link velocity as the distance between the source and target spots divided by their frame difference. Units are in physical distance per frame.'}

The ellipsoid and the covariance matrix.

The spot ellipsoid shape is represented through a covariance matrix. The covariance matrix itself is stored in the variables c_11, c_12, c_13, c_22, c_23, c_33, so that this symmetric real 3x3 matrix can be expressed as:

C = 	[  	c_11, 	c_12, 	c_13
		c_12, 	c_22,	c_23
		c_13,	c_23,	c_33 ];

The bsrs variable contains the bounding-sphere radius squared. It is the radius of the smallest sphere that includes the spot ellipsoid fully, squared.

In the demo_import_and_plot.m file there is a function can plot the spot ellipsoid. You would use it for instance like this:

spots = G.Nodes;
i = 1;
spot = spots( i, : );

M = [ spot.x; spot.y; spot.z ];
C = [
  spot.c_11, spot.c_12, spot.c_13
  spot.c_12, spot.c_22, spot.c_23
  spot.c_13, spot.c_23, spot.c_33
];

h(i) = plot_ellipsoid( M, C );
set( h(i), ...
  'EdgeColor', 'None', ...
  'FaceColor', 'b', ...
  'FaceLighting', 'Flat' );
light()

The metadata.

We also retrieve the metadata, made mainly of the physical units, and the absolute path to the XML/H5 BDV file:

>> metadata

metadata = 

  struct with fields:

                     version: '0.3'
         spim_data_file_path: '/Users/tinevez/Development/Mastodon/TrackMate3/samples/mamutproject/datasethdf5.xml'
    spim_data_file_path_type: 'absolute'
                 space_units: 'um'
                  time_units: 'frame'

The tag-set structure.

The last variable returned is the tag-set structure. For each tag-set, it contains its label, its id and the tag list.

>> tss

tss = 

  2×1 struct array with fields:

    id
    name
    tags

>> tss(1)

ans = 

  struct with fields:

      id: 0
    name: 'Fruits'
    tags: [3×1 struct]

The tags themselves are a struct with an id, a label and a color encoded as an integer.

>> tss(1).tags(1)

ans = 

  struct with fields:

    label: 'Apple'
       id: 0
    color: -52480

In the demo_import_and_plot.m file there is a function to convert the int color into a RGB triplet. I might as well give it here:

function rgb = to_hex_color( val )
    hex_code = dec2hex( typecast( int32( val ), 'uint32'  ) );   
    rgb = reshape( sscanf( hex_code( 1 : 6 ).', '%2x' ), 3, []).' / 255;    
end

>> val = tss(1).tags(1).color;
>> rgb = to_hex_color( val )l
>> rgb

rgb =

    1.0000    1.0000    0.2000

Performance.

On my MacPro I tested the import of a dataset made of about 30k objects (spots and links) in less than 1s.

Limitation.

The importer strongly depends on how the Mastodon file format is written. Any changes made to the serialisation procedure in the Java Mastodon project will likely break the importer. Right now the importer echoes a warning if the Mastodon file version is not 0.3.

Examples.

The screenshots below mostly exemplify what can be done from the imported data structure, with the MATLAB visualisation tools.

Import the full track graph and the spot ellipsoids.

After importing top view

After importing side view

Import the tags and use them to color spots and links.

Nodes table with tags

Coloring by tags

The MaMuT dataset imported as ellipsoids.

This is the results of the detection of cells using the TGMM framework of Amat et al., 2014.

The MaMuT dataset

The MaMuT dataset

Colouring individual tracks.

Tracks in the MaMuT dataset

A smaller dataset.

A smaller dataset

A smaller dataset

Inspecting the data numerical features.

figure;
s = scatter( G.Nodes.SpotGaussianFilteredIntensityMeanCh1, G.Nodes.z, 75, sqrt(G.Nodes.bsrs), 'filled' );
s.MarkerEdgeColor = [ 0.3 0.3 0.3 ];

xlabel( 'Mean intensity' );
ylabel( sprintf( 'Z position (%s)', G.Nodes.Properties.VariableUnits{4} ) )
colormap jet
c = colorbar;
c.Label.String = sprintf( 'Approx size (%s)', G.Nodes.Properties.VariableUnits{4} );

Numerical features




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap