• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Thinklab-SJTU/awesome-ml4co: Awesome machine learning for combinatorial optimiza ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Thinklab-SJTU/awesome-ml4co

开源软件地址(OpenSource Url):

https://github.com/Thinklab-SJTU/awesome-ml4co

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Awesome Machine Learning for Combinatorial Optimization Resources

We would like to maintain a list of resources that utilize machine learning technologies to solve combinatorial optimization problems.

We mark work contributed by Thinklab with .

Maintained by members in SJTU-Thinklab: Chang Liu, Runzhong Wang, Jiayi Zhang, Zelin Zhao, Haoyu Geng, Tianzhe Wang, Wenxuan Guo, Wenjie Wu and Junchi Yan. We also thank all contributers from the community!

We are looking for post-docs interested in machine learning especially for learning combinatorial solvers, dynamic graphs, and reinforcement learning. Please send your up-to-date resume via yanjunchi AT sjtu.edu.cn.

Content

1. Survey
2. Problems
2.1 Graph Matching (GM) 2.2 Quadratic Assignment Problem (QAP)
2.3 Travelling Salesman Problem (TSP) 2.4 Maximal Cut
2.5 Vehicle Routing Problem (VRP) 2.6 Job Shop Scheduling Problem (JSSP)
2.7 Computing Resource Allocation 2.8 Bin Packing Problem (BPP)
2.9 Graph Edit Distance (GED) 2.10 Hamiltonian Cycle Problem (HCP)
2.11 Graph Coloring 2.12 Maximal Common Subgraph (MCS)
2.13 Influence Maximization 2.14 Maximal/Maximum Independent Set
2.15 Mixed Integer Programming 2.16 Causal Discovery
2.17 Game Theoretic Semantics 2.18 Boolean Satisfiability (SAT)
2.19 Differentiable Optimization 2.20 Car Dispatch
2.21 Electronic Design Automation (EDA) 2.22 Generalization
2.23 Conjunctive Query Containment 2.24 Orienteering Problem (OP)

Survey Papers

  1. Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research INFORMS Journal on Computing, 1999. journal

    Smith, Kate A.

  2. Model-Based Search for Combinatorial Optimization: A Critical Survey. Annals of Operations Research, 2004. journal

    Zlochin, Mark and Birattari, Mauro and Meuleau, Nicolas and Dorigo, Marco.

  3. A Survey of Reinforcement Learning and Agent-Based Approaches to Combinatorial Optimization. Citeseer, 2012. journal

    Miagkikh, Victor

  4. Machine Learning Approaches to Learning Heuristics for Combinatorial Optimization Problems. Procedia Manufacturing, 2018. journal

    Mirshekarian, Sadegh and Sormaz, Dusan.

  5. Boosting combinatorial problem modeling with machine learning. IJCAI, 2018. paper

    Lombardi, Michele and Milano, Michela.

  6. A Review of combinatorial optimization with graph neural networks. BigDIA, 2019. paper

    Huang, Tingfei and Ma, Yang and Zhou, Yuzhen and Huang, Honglan Huang and Chen, Dongmei and Gong, Zidan and Liu, Yao.

  7. Machine Learning for Combinatorial Optimization: a Methodological Tour d'horizon. EJOR, 2020. journal

    Bengio, Yoshua and Lodi, Andrea and Prouvost, Antoine.

  8. Reinforcement Learning for Combinatorial Optimization: A Survey. Arxiv, 2020. paper

    Mazyavkina, Nina and Sviridov, Sergey and Ivanov, Sergei and Burnaev, Evgeny.

  9. Learning Graph Matching and Related Combinatorial Optimization Problems. IJCAI, 2020. paper

    Yan, Junchi and Yang, Shuang, and Hancock, Edwin R.

  10. Learning Combinatorial Optimization on Graphs: A Survey with Applications to Networking. IEEE ACCESS, 2020. journal

    Vesselinova, Natalia and Steinert, Rebecca and Perez-Ramirez, Daniel F. and Boman, Magnus.

  11. From Shallow to Deep Interactions Between Knowledge Representation, Reasoning and Machine Learning. Arxiv, 2020. paper

    Bouraoui, Zied and Cornuéjols, Antoine and Denœux, Thierry and Destercke, Sébastien and Dubois, Didier and Guillaume, Romain and Marques-Silva, João and Mengin, Jérôme and Prade, Henri and Schockaert, Steven and Serrurier, Mathieu and Vrain, Christel.

  12. A Survey on Reinforcement Learning for Combinatorial Optimization. Arxiv, 2020. paper

    Yang, Yunhao and Whinston, Andrew.

  13. Research Reviews of Combinatorial Optimization Methods Based on Deep Reinforcement Learning. (in chinese) 自动化学报, 2020. journal

    Li, Kai-Wen and Zhang, Tao and Wang, Rui and Qin, Wei-Jian and He, Hui-Hui and Huang, Hong.

  14. Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art. Data Science and Engineering, 2021. journal

    Peng, Yue, Choi, Byron, and Xu, Jianliang.

  15. Combinatorial Optimization and Reasoning with Graph Neural Networks Arxiv, 2021. paper

    Cappart, Quentin and Chetelat, Didier and Khalil, Elias and Lodi, Andrea and Morris, Christopher and Velickovic, Petar

  16. Machine Learning for Electronic Design Automation (EDA) : A Survey TODAES, 2021. journal

    Huang, Guyue and Hu, Jingbo and He, Yifan and Liu, Jialong and Ma, Mingyuan and Shen, Zhaoyang and Wu, Juejian and Xu, Yuanfan and Zhang, Hengrui and Zhong, Kai and others

Problems

Graph Matching

  1. Revised Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks Arxiv, 2017. paper, code

    Nowak, Alex and Villar, Soledad and Bandeira, S. Afonso and Bruna, Joan

  2. Deep Learning of Graph Matching. CVPR, 2018. paper

    Zanfir, Andrei and Sminchisescu, Cristian

  3. Learning Combinatorial Embedding Networks for Deep Graph Matching. ICCV, 2019. paper, code

    Wang, Runzhong and Yan, Junchi and Yang, Xiaokang

  4. Deep Graphical Feature Learning for the Feature Matching Problem. ICCV, 2019. paper

    Zhang, Zhen and Lee, Wee Sun

  5. GLMNet: Graph Learning-Matching Networks for Feature Matching. Arxiv, 2019. paper

    Jiang, Bo and Sun, Pengfei and Tang, Jin and Luo, Bin

  6. Learning deep graph matching with channel-independent embedding and Hungarian attention. ICLR, 2020. paper, code

    Yu, Tianshu and Wang, Runzhong and Yan, Junchi and Li, Baoxin

  7. Deep Graph Matching Consensus. ICLR, 2020. paper

    Fey, Matthias and Lenssen, Jan E. and Morris, Christopher and Masci, Jonathan and Kriege, Nils M.

  8. Graduated Assignment for Joint Multi-Graph Matching and Clustering with Application to Unsupervised Graph Matching Network Learning. NeurIPS, 2020. paper, code

    Wang, Runzhong and Yan, Junchi and Yang, Xiaokang

  9. Combinatorial Learning of Robust Deep Graph Matching: An Embedding Based Approach. TPAMI, 2020. paper, code

    Wang, Runzhong and Yan, Junchi and Yang, Xiaokang

  10. Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers. ECCV, 2020. paper, code

    Rolinek, Michal and Swoboda, Paul and Zietlow, Dominik and Paulus, Anselm and Musil, Vit and Martius, Georg

  11. Revocable Deep Reinforcement Learning with Affinity Regularization for Outlier-Robust Graph Matching. Arxiv, 2020. paper

    Liu, Chang and Jiang, Zetian and Wang, Runzhong and Yan, Junchi and Huang, Lingxiao and Lu, Pinyan

  12. Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. TPAMI, 2021. paper, code

    Wang, Runzhong and Yan, Junchi and Yang, Xiaokang

  13. Deep Latent Graph Matching ICML, 2021. paper

    Yu, Tianshu and Wang, Runzhong and Yan, Junchi and Li, Baoxin.

  14. IA-GM: A Deep Bidirectional Learning Method for Graph Matching AAAI, 2021. paper

    Zhao, Kaixuan and Tu, Shikui and Xu, Lei

  15. Deep Graph Matching under Quadratic Constraint CVPR, 2021. paper

    Gao, Quankai and Wang, Fudong and Xue, Nan and Yu, Jin-Gang and Xia, Gui-Song

  16. GAMnet: Robust Feature Matching via Graph Adversarial-Matching Network MM, 2021. paper

    Jiang, Bo and Sun, Pengfei and Zhang, Ziyan and Tang, Jin and Luo, Bin

  17. Hypergraph Neural Networks for Hypergraph Matching ICCV, 2021. paper

    Liao, Xiaowei and Xu, Yong and Ling, Haibin

  18. Appearance and Structure Aware Robust Deep Visual Graph Matching: Attack, Defense and Beyond CVPR, 2022. paper, code

    Ren, Qibing and Bao, Qingquan and Wang, Runzhong and Yan, Junchi

  19. Self-supervised Learning of Visual Graph Matching ECCV, 2022. paper, code

    Liu, Chang and Zhang, Shaofeng and Yang, Xiaokang and Yan, Junchi

Quadratic Assignment Problem

  1. Revised Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks Arxiv, 2017. paper, code

    Nowak, Alex and Villar, Soledad and Bandeira, S. Afonso and Bruna, Joan

  2. Revocable Deep Reinforcement Learning with Affinity Regularization for Outlier-Robust Graph Matching. Arxiv, 2020. paper

    Liu, Chang and Jiang, Zetian and Wang, Runzhong and Yan, Junchi and Huang, Lingxiao and Lu, Pinyan

  3. Neural Graph Matching Network: Learning Lawler's Quadratic Assignment Problem with Extension to Hypergraph and Multiple-graph Matching. TPAMI, 2021. paper, code

    Wang, Runzhong and Yan, Junchi and Yang, Xiaokang

Travelling Salesman Problem

  1. Learning Combinatorial Optimization Algorithms over Graphs. NeurIPS, 2017. paper

    Dai, Hanjun and Khalil, Elias B and Zhang, Yuyu and Dilkina, Bistra and Song, Le

  2. Learning Heuristics for the TSP by Policy Gradient CPAIOR, 2018. paper, code

    Michel DeudonPierre CournutAlexandre Lacoste

  3. Attention, Learn to Solve Routing Problems! ICLR, 2019. paper

    Kool, Wouter and Van Hoof, Herke and Welling, Max.

  4. Learning to Solve NP-Complete Problems: A Graph Neural Network for Decision TSP. AAAI, 2019. paper

    Prates, Marcelo and Avelar, Pedro HC and Lemos, Henrique and Lamb, Luis C and Vardi, Moshe Y.

  5. An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem Arxiv, 2019. paper, code

    Chaitanya K. Joshi, Thomas Laurent, Xavier Bresson

  6. POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. NeurIPS, 2020. paper, code

    Kwon, Yeong-Dae and Choo, Jinho and Kim, Byoungjip and Yoon, Iljoo and Min, Seungjai and Gwon, Youngjune.

  7. Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances. Arxiv, 2020. paper

    Fu, Zhang-Hua and Qiu, Kai-Bin and Zha, Hongyuan.

  8. Differentiation of Blackbox Combinatorial Solvers ICLR, 2020. paper, code

    Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, Michal Rolínek

  9. A Reinforcement Learning Approach for Optimizing Multiple Traveling Salesman Problems over Graphs KBS, 2020. journal

    Hu, Yujiao and Yao, Yuan and Lee, Wee Sun

  10. Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep Reinforcement Learning ACML, 2020. paper, code

    d O Costa, Paulo R and Rhuggenaath, Jason and Zhang, Yingqian and Akcay, Alp

  11. Deep Reinforcement Learning for Combinatorial Optimization: Covering Salesman Problems. IEEE Trans Cybern, 2021. journal

    Kaiwen Li, Tao Zhang, Rui Wang Yuheng Wang, and Yi Han

  12. The Transformer Network for the Traveling Salesman Problem IPAM, 2021. paper

    Xavier Bresson,Thomas Laurent

  13. Learning Improvement Heuristics for Solving Routing Problems TNNLS, 2021. journal

    Wu, Yaoxin and Song, Wen and Cao, Zhiguang and Zhang, Jie and Lim, Andrew

  14. Reversible Action Design for Combinatorial Optimization with Reinforcement Learning Arxiv, 2021. paper

    Yao, Fan and Cai, Renqin and Wang, Hongning

  15. Solving Dynamic Traveling Salesman Problems with Deep Reinforcement Learning. TNNLS, 2021. journal

    Zizhen Zhang, Hong Liu, Meng Chu Zhou, Jiahai Wang

  16. ScheduleNet: Learn to Solve Multi-agent Scheduling Problems with Reinforcement Learning Arxiv, 2021. paper

    Junyoung Park, Sanjar Bakhtiyar, Jinkyoo Park

  17. DAN: Decentralized Attention-based Neural Network to Solve the MinMax Multiple Traveling Salesman Problem Arxiv, 2021. paper

    Cao, Yuhong and Sun, Zhanhong and Sartoretti, Guillaume

  18. Reinforcement Learning for Route Optimization with Robustness Guarantees IJCAI, 2021. paper

    Jacobs, Tobias and Alesiani, Francesco and Ermis, Gulcin

  19. Learning TSP Requires Rethinking Generalization CP, 2021. paper, code

    Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau and Thomas Laurent

  20. The First AI4TSP Competition: Learning to Solve Stochastic Routing Problems Arxiv, 2022. paper, code

    Bliek, Laurens and da Costa, Paulo and Afshar, Reza Refaei and Zhang, Yingqian and Catshoek, Tom and Vos, Daniel and Verwer, Sicco and Schmitt-Ulms, Fynn and Hottung, Andre and Shah, Tapan and others

  21. Graph Neural Network Guided Local Search for the Traveling Salesperson Problem ICLR, 2022. paper

    Hudson, Benjamin and Li, Qingbiao and Malencia, Matthew and Prorok, Amanda

  22. Preference Conditioned Neural Multi-objective Combinatorial Optimization ICLR, 2022. paper

    Lin, Xi and Yang, Zhiyuan and Zhang, Qingfu

  23. Generalization of Neural Combinatorial Solvers Through the Lens of Adversarial Robustness ICLR, 2022. paper

    Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski and Stephan Günnemann

Maximal Cut

  1. Learning Combinatorial Optimization Algorithms over Graphs. NeurIPS, 2017. paper

    Dai, Hanjun and Khalil, Elias B and Zhang, Yuyu and Dilkina, Bistra and Song, Le

  2. Exploratory Combinatorial Optimization with Reinforcement Learning. AAAI, 2020. paper

    LBarrett, Thomas and Clements, William and Foerster, Jakob and Lvovsky, Alex.

  3. Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs. NeurIPS, 2020. paper

    Karalias, Nikolaos and Loukas, Andreas

  4. Reversible Action Design for Combinatorial Optimization with Reinforcement Learning Arxiv, 2021. paper

    Yao, Fan and Cai, Renqin and Wang, Hongning

  5. LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation ICML, 2022. paper, code

    Ireland, David and G. Montana

Vehicle Routing Problem

  1. Learning to Perform Local Rewriting for Combinatorial Optimization. NeurIPS, 2019. paper, code

    Chen, Xinyun and Tian, Yuandong.

  2. Deep Reinforcement Learning for the Electric Vehicle Routing Problem with Time Windows. Arxiv, 2020. paper

    Lin, Bo and Ghaddar, Bissan and Nathwani, Jatin.

  3. Efficiently Solving the Practical,Vehicle Routing Problem: A Novel Joint Learning Approach. KDD, 2020. paper

    Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, Yinghui Xu

  4. Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing NeurIPS, 2020. paper, code

    Arthur Delarue, Ross Anderson, Christian Tjandraatmadja

  5. A Learning-based Iterative Method for Solving Vehicle Routing Problems ICLR, 2020. paper

    Lu, Hao and Zhang, Xingwen and Yang, Shuang

  6. Neural Large Neighborhood Search for the Capacitated Vehicle Routing Problem Arxiv, 2020. paper

    Hottung, Andre and Tierney, Kevin

  7. Learning Improvement Heuristics for Solving Routing Problems TNNLS, 2021. journal

    Wu, Yaoxin and Song, Wen and Cao, Zhiguang and Zhang, Jie and Lim, Andrew

  8. Reinforcement Learning for Route Optimization with Robustness Guarantees IJCAI, 2021. paper

    Jacobs, Tobias and Alesiani, Francesco and Ermis, Gulcin

  9. Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems. AAAI, 2021. paper, code

    Liang Xin, Wen Song, Zhiguang Cao, Jie Zhang

  10. Analytics and Machine Learning in Vehicle Routing Research Arxiv, 2021. paper

    Bai, Ruibin and Chen, Xinan and Chen, Zhi-Long and Cui, Tianxiang and Gong, Shuhui and He, Wentao and Jiang, Xiaoping and Jin, Huan and Jin, Jiahuan and Kendall, Graham and others

  11. RP-DQN: An application of Q-Learning to Vehicle Routing Problems Arxiv, 2021. paper

    Bdeir, Ahmad and Boeder, Simon and Dernedde, Tim and Tkachuk, Kirill and Falkner, Jonas K and Schmidt-Thieme, Lars

  12. Deep Policy Dynamic Programming for Vehicle Routing Problems Arxiv, 2021. paper

    Kool, Wouter and van Hoof, Herke and Gromicho, Joaquim and Welling, Max

  13. Learning to Delegate for Large-scale Vehicle Routing NeurIPS, 2021. paper

    Li, Sirui and Yan, Zhongxia and Wu, Cathy

  14. Learning a Latent Search Space for Routing Problems using Variational Autoencoders ICLR, 2021. paper

    Hottung, Andre and Bhandari, Bhanu and Tierney, Kevin

  15. Preference Conditioned Neural Multi-objective Combinatorial Optimization ICLR, 2022. paper

    Lin, Xi and Yang, Zhiyuan and Zhang, Qingfu

Job Shop Scheduling Problem

  1. Deep Reinforcement Learning as a Job Shop Scheduling Solver: A Literature Review Hybrid Intelligent Systems, 2018. journal

    Bruno Cunha, Ana M. Madureira, Benjamim Fonseca, Duarte Coelho

  2. Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network Transactions on Industrial Informatics, 2019. journal

    Chun-Cheng Lin, Der-Jiunn Deng, Yen-Ling Chih, Hsin-Ting Chiu

  3. Multi-Agent Reinforcement Learning for Job Shop Scheduling in Flexible Manufacturing Systems International Conference on Artificial Intelligence for Industries (AI4I), 2019. paper

    Schirin Baer, Jupiter Bakakeu, Richard Meyes, Tobias Meisen

  4. Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning. NeurIPS, 2020. paper, code

    Zhang, Cong and Song, Wen and Cao, Zhiguang and Zhang, Jie and Tan, Puay Siew and Xu, Chi.

  5. ScheduleNet: Learn to Solve Multi-agent Scheduling Problems with Reinforcement Learning Arxiv, 2021. paper

    Junyoung Park, Sanjar Bakhtiyar, Jinkyoo Park

  6. Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning Computer Networks, 2021. journal

    Libing Wang, Xin Hu, Yin Wang, Sujie Xu, Shijun Ma, Kexin Yang, Zhijun Liu, Weidong Wang

  7. Learning to schedule job-shop problems: Representation and policy learning using graph neural network and reinforcement learning. International Journal of Production Research, 2021. journal

    Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, Jinkyoo Park

  8. Explainable reinforcement learning in production control of job shop manufacturing system. International Journal of Production Research, 2021. journal

    Andreas Kuhnle,Marvin Carl May,Louis Sch?fer & Gisela Lanza

Computing Resource Allocation

  1. Resource Management with Deep Reinforcement Learning. HotNets, 2016. paper

    Mao, Hongzi and Alizadeh, Mohammad and Menache, Ishai and Kandula, Srikanth.

  2. Learning to Perform Local Rewriting for Combinatorial Optimization. NeurIPS, 2019. paper, code

    Chen, Xinyun and Tian, Yuandong.

  3. Learning Scheduling Algorithms for Data Processing Clusters SIGCOMM, 2019. paper, code

    Mao, Hongzi and Schwarzkopf, Malte and Venkatakrishnan, Bojja Shaileshh and Meng, Zili and Alizadeh, Mohammad.

  4. Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach IEEE Transactions on Emerging Topics in Computing, 2019. Paper

    Jiadai; Lei Zhao; Jiajia Liu; Nei Kato

  5. A Two-stage Framework and Reinforcement Learning-based Optimization Algorithms for Complex Scheduling Problems Arxiv, 2021. paper

    He, Yongming and Wu, Guohua and Chen, Yingwu and Pedrycz, Witold

  6. A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs NeurIPS, 2021. paper, code

    Wang, Runzhong and Hua, Zhigang and Liu, Gan and Zhang, Jiayi and Yan, Junchi and Qi, Feng and Yang, Shuang and Zhou, Jun and Yang, Xiaokang

Bin Packing Problem

  1. Small Boxes Big Data: A Deep Learning Approach to Optimize Variable Sized Bin Packing BigDataService, 2017. paper

    Mao, Feng and Blanco, Edgar and Fu, Mingang and Jain, Rohit and Gupta, Anurag and Mancel, Sebastien and Yuan, Rong and Guo, Stephen and Kumar, Sai and Tian, Yayang

  2. Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning Method Arxiv, 2017. paper

    Hu, Haoyuan and Zhang, Xiaodong and Yan, Xiaowei and Wang, Longfei and Xu, Yinghui

  3. Ranked Reward: Enabling Self-Play Reinforcement Learning for Combinatorial Optimization Alexandre Arxiv, 2018. paper

    Laterre, Alexandre and Fu, Yunguan and Jabri, Mohamed Khalil and Cohen, Alain-Sam and Kas, David and Hajjar, Karl and Dahl, Torbjorn S and Kerkeni, Amine and Beguir, Karim

  4. A Multi-task Selected Learning Approach for Solving 3D Bin Packing Problem. AAMAS, 2019. paper

    Duan, Lu and Hu, Haoyuan and Qian, Yu and Gong, Yu and Zhang, Xiaodong and Xu, Yinghui and Wei, Jiangwen.

  5. A Data-Driven Approach for Multi-level Packing Problems in Manufacturing Industry KDD, 2019. paper

    Chen, Lei and Tong, Xialiang and Yuan, Mingxuan and Zeng, Jia and Chen, Lei

  6. Solving Packing Problems by Conditional Query Learning OpenReview, 2019. paper

    Li, Dongda and Ren, Changwei and Gu, Zhaoquan and Wang, Yuexuan and Lau, Francis

  7. RePack: Dense Object Packing Using Deep CNN with Reinforcement Learning CACS, 2019. paper

    Chu, Yu-Cheng and Lin, Horng-Horng

  8. Reinforcement learning driven heuristic optimization Arxiv, 2019. paper

    Cai, Qingpeng and Hang, Will and Mirhoseini, Azalia and Tucker, George and Wang, Jingtao and Wei, Wei

  9. A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing. AAAI Workshop, 2020. paper

    Verma, Richa and Singhal, Aniruddha and Khadilkar, Harshad and Basumatary, Ansuma and Nayak, Siddharth and Singh, Harsh Vardhan and Kumar, Swagat and Sinha, Rajesh.

  10. Robot Packing with Known Items and Nondeterministic Arrival Order. TASAE, 2020. paper

    Wang, Fan and Hauser, Kris.

  11. TAP-Net: Transport-and-Pack using Reinforcement Learning. TOG, 2020. paper, code

    Hu, Ruizhen and Xu, Juzhan and Chen, Bin and Gong, Minglun and Zhang, Hao and Huang, Hui.

  12. Simultaneous Planning for Item Picking and Placing by Deep Reinforcement Learning IROS, 2020. paper

    Tanaka, Tatsuya and Kaneko, Toshimitsu and Sekine, Masahiro and Tangkaratt, Voot and Sugiyama, Masashi

  13. Monte Carlo Tree Search on Perfect Rectangle Packing Problem Instances GECCO, 2020. paper

    Pejic, Igor and van den Berg, Daan

  14. PackIt: A Virtual Environment for Geometric Planning ICML, 2020. paper, code

    Goyal, Ankit and Deng, Jia

  15. Online 3D Bin Packing with Constrained Deep Reinforcement Learning. AAAI, 2021. paper, code

    Zhao, Hang and She, Qijin and Zhu, Chenyang and Yang, Yin and Xu, Kai.

  16. Learning Practically Feasible Policies for Online 3D Bin Packing Arxiv, 2021. paper

    Hang Zhao and Chenyang Zhu and Xin Xu and Hui Huang and Kai Xu

  17. Attend2Pack: Bin Packing through Deep Reinforcement Learning with Attention ICML Workshop, 2021. paper

    Jingwei Zhang and Bin Zi and Xiaoyu Ge

  18. Solving 3D bin packing problem via multimodal deep reinforcement learning AAMAS, 2021. paper

    Jiang, Yuan, Zhiguang Cao, and Jie Zhang

  19. Learning to Solve 3-D Bin Packing Problem via Deep Reinforcement Learning and Constraint Programming IEEE transactions on cybernetics, 2021. paper

    Jiang, Yuan and Cao, Zhiguang and Zhang, Jie

  20. Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem CIKM, 2021. paper

    Zhu, Qianwen and Li, Xihan and Zhang, Zihan and Luo, Zhixing and Tong, Xialiang and Yuan, Mingxuan and Zeng, Jia

  21. Learning Efficient Online 3D Bin Packing on Packing Configuration Trees. ICLR, 2022. paper

    Hang Zhao and Kai Xu

Graph Edit Distance

  1. SimGNN - A Neural Network Approach to Fast Graph Similarity Computation WSDM, 2019. paper, code

    Bai, Yunsheng and Ding, Hao and Bian, Song and Chen, Ting and Sun, Yizhou and Wang, Wei

  2. Graph Matching Networks for Learning the Similarity of Graph Structured Objects ICML, 2019. paper, code

    Li, Yujia and Gu, Chenjie and Dullien, Thomas and Vinyals, Oriol and Kohli, Pushmeet

  3. Convolutional Embedding for Edit Distance SIGIR, 2020. paper, code

    Dai, Xinyan and Yan, Xiao and Zhou, Kaiwen and Wang, Yuxuan and Yang, Han and Cheng, James

  4. Learning-Based Efficient Graph Similarity Computation via Multi-Scale Convolutional Set Matching AAAI, 2020. paper, code

    Bai, Yunsheng and Ding, Hao and Gu, Ken and Sun, Yizhou and Wang, Wei

  5. A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs NeurIPS, 2021. paper, code

    Wang, Runzhong and Hua, Zhigang and Liu, Gan and Zhang, Jiayi and Yan, Junchi and Qi, Feng and Yang, Shuang and Zhou, Jun and Yang, Xiaokang

  6. Combinatorial Learning of Graph Edit Distance via Dynamic Embedding. CVPR, 2021. paper, code

    Wang, Runzhong and Zhang, Tianqi and Yu, Tianshu and Yan, Junchi and Yang, Xiaokang.

Hamiltonian Cycle Problem

  1. A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs NeurIPS, 2021. paper, code

    Wang, Runzhong and Hua, Zhigang and Liu, Gan and Zhang, Jiayi and Yan, Junchi and Qi, Feng and Yang, Shuang and Zhou, Jun and Yang, Xiaokang

Graph Coloring

  1. Deep Learning-based Hybrid Graph-Coloring Algorithm for Register Allocation. Arxiv, 2019. paper

    Das, Dibyendu and Ahmad, Shahid Asghar and Venkataramanan, Kumar.

  2. Neural Models for Output-Space Invariance in Combinatorial Problems ICLR, 2022. paper

    Nandwani, Yatin and Jain, Vidit and Singla, Parag and others

  3. Enhancing Column Generation by a Machine-Learning-Based Pricing Heuristic for Graph Coloring AAAI, 2022. paper, code

    Shen, Yunzhuang, Yuan Sun, Xiaodong Li, Andrew Craig Eberhard and Andreas T. Ernst.

Maximal Common Subgraph

  1. Fast Detection of Maximum Common Subgraph via Deep Q-Learning. Arxiv, 2020. paper

    Bai, Yunsheng and Xu, Derek and Wang, Alex and Gu, Ken and Wu, Xueqing and Marinovic, Agustin and Ro, Christopher and Sun, Yizhou and Wang, Wei.

Influence Maximization

  1. Learning Heuristics over Large Graphs via Deep Reinforcement Learning. NeurIPS, 2020. paper

    Mittal, Akash and Dhawan, Anuj and Manchanda, Sahil and Medya, Sourav and Ranu, Sayan and Singh, Ambuj.

  2. Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks. ICML, 2021. paper

    Eli A. Meirom, Haggai Maron, Shie Mannor, Gal Chechik

  3. LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation ICML, 2022. paper, code

    Ireland, David and G. Montana

Maximal/Maximum Independent Set

  1. Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. NeurIPS, 2018. paper

    Li, Zhuwen and Chen, Qifeng and Koltun, Vladlen.

  2. Learning What to Defer for Maximum Independent Sets ICML, 2020. paper

    Ahn, Sungsoo and Seo, Younggyo and Shin, Jinwoo

  3. Distributed Scheduling Using Graph Neural Networks ICASSP, 2021. paper

    Zhao, Zhongyuan and Verma, Gunjan and Rao, Chirag and Swami, Ananthram and Segarra, Santiago

  4. Solving Graph-based Public Good Games with Tree Search and Imitation Learning NeurlPS, 2021. paper

    Darvariu, Victor-Alexandru and Hailes, Stephen and Musolesi, Mirco

  5. NN-Baker: A Neural-network Infused Algorithmic Framework for Optimization Problems on Geometric Intersection Graphs NeurlPS, 2021. paper


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap