• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

dlab-berkeley/MachineLearningWG: D-Lab's Machine Learning Working Group at U ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

dlab-berkeley/MachineLearningWG

开源软件地址(OpenSource Url):

https://github.com/dlab-berkeley/MachineLearningWG

开源编程语言(OpenSource Language):

HTML 93.4%

开源软件介绍(OpenSource Introduction):

Machine Learning Working Group, Fall 2018

We meet on alternating Wednesdays from 3-5pm at D-Lab (Barrows 356). We have no expectation of prior machine learning experience, and simply go through one algorithm a meeting, with about 30 minutes each in R & Python. We also incorporate lightning talks and other guest presentations throughout our meetings.

Fall 2018 - unsupervised methods

We are always looking for student/staff/faculty presenters. Please contact us if you are interested!

More information on the D-Lab MLWG website

Previous Semesters

  • Spring 2018
    • k-nearest neighbors
    • decision tree
    • random forest
    • gradient boosting
    • elastic net
  • Fall 2017
    • basics of neural networks for image processing
  • Spring 2017
    • k-nearest neighbors
    • stepwise regression
    • linear and polynomial regression, smoothing splines
    • multivariate adaptive regression splines and generalized additive models
    • support vector machines
    • neural networks.
  • Fall 2016
    • decision trees, random forests, penalized regression, and boosting

Resources

Books:

  1. Intro to Statistical Learning by James et al. (free pdf) (Amazon)
  2. Applied Predictive Modeling by Max Kuhn (Amazon)
  3. Python Data Science Handbook by Jake VanderPlas (online version)
  4. Elements of Statistical Learning by Hastie et al. (free pdf) (Amazon)
  5. Modern Multivariate Statistical Techniques by Alan Izenman (Amazon)
  6. Differential Equations and Linear Algebra by Stephen Goode and Scott Annin (Amazon)
  7. Statistical Learning with Sparsity: The Lasso and Generalizations by Trevor Hastie, Robert Tibshirani, and Martin Wainwright (free pdf) (Amazon) and

Help:

Courses at Berkeley:

  • Stat 154 - Statistical Learning
  • CS 189 / CS 289A - Machine Learning
  • COMPSCI x460 - Practical Machine Learning with R [UC Berkeley Extension]
  • PH 252D - Causal Inference
  • PH 295 - Big Data
  • PH 295 - Targeted Learning for Biomedical Big Data

Online classes:

Other Campus Groups:




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap