• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

WangYang-wy/Machine-Learning-Foundations-and-Techniques: Coursera 机器学习基石 ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

WangYang-wy/Machine-Learning-Foundations-and-Techniques

开源软件地址(OpenSource Url):

https://github.com/WangYang-wy/Machine-Learning-Foundations-and-Techniques

开源编程语言(OpenSource Language):


开源软件介绍(OpenSource Introduction):

Machine Learning Foundations and Techniques

Coursera 机器学习基石 机器学习技法 林轩田 课堂PPT、作业及课堂笔记。

由于笔记里存在公式编辑,请自行下载chrome的扩展程序GitHub with MathJax

Professor

Hsuan-Tien Lin

Coursera

bilibili

延伸阅读

預備知識

作業零 (機率統計、線性代數、微分之基本知識)。

參考書籍

Learning from Data: A Short Course , Abu-Mostafa, Magdon-Ismail, Lin, 2013.

經典文獻

  • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6):386-408, 1958. (第二講:Perceptron 的出處)
  • W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963. (第四講:Hoeffding's Inequality)
  • Y. S. Abu-Mostafa, X. Song , A. Nicholson, M. Magdon-ismail. The bin model, 1995. (第四講:bin model 的出處)
  • V. Vapnik. The nature of statistical learning theory, 2nd edition, 2000. (第五到八講:VC dimension 與 VC bound 的完整數學推導及延伸)
  • Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: information versus complexity in learning. Neural Computation, 1(3):312-317, 1989. (第七講:VC Dimension 的概念與重要性)

參考文獻

  • A. Sadilek, S. Brennan, H. Kautz, and V. Silenzio. nEmesis: Which restaurants should you avoid today? First AAAI Conference on Human Computation and Crowdsourcing, 2013. (第一講:ML 在「食」的應用)
  • Y. S. Abu-Mostafa. Machines that think for themselves. Scientific American, 289(7):78-81, 2012. (第一講:ML 在「衣」的應用)
  • A. Tsanas, A. Xifara. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49: 560-567, 2012. (第一講:ML 在「住」的應用)
  • J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel. Introduction to the special issue on machine learning for traffic sign recognition. IEEE Transactions on Intelligent Transportation Systems 13(4): 1481-1483, 2012. (第一講:ML 在「行」的應用)
  • R. Bell, J. Bennett, Y. Koren, and C. Volinsky. The million dollar programming prize. IEEE Spectrum, 46(5):29-33, 2009. (第一講:Netflix 大賽)
  • S. I. Gallant. Perceptron-based learning algorithms. IEEE Transactions on Neural Networks, 1(2):179-191, 1990. (第二講:pocket 的出處,注意到實際的 pocket 演算法比我們介紹的要複雜)
  • R. Xu, D. Wunsch II. Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645-678, 2005. (第三講:Clustering)
  • X. Zhu. Semi-supervised learning literature survey. University of Wisconsin Madison, 2008. (第三講:Semi-supervised)
  • Z. Ghahramani. Unsupervised learning. In Advanced Lectures in Machine Learning (MLSS ’03), pages 72–112, 2004. (第三講:Unsupervised)
  • L. Kaelbling, M. Littman, A. Moore. reinforcement learning: a survey. Journal of Artificial Intelligence Research, 4: 237-285. (第三講:Reinforcement)
  • A. Blum. On-Line algorithms in machine learning. Carnegie Mellon University,1998. (第三講:Online)
  • B. Settles. Active learning literature survey. University of Wisconsin Madison, 2010. (第三講:Active)
  • D. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7): 1341-1390. (第四講:No free lunch 的正式版)
  • T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14(3):326–334, 1965. (第五到六講:Growth Function)
  • B. Zadrozny, J. Langford, N. Abe. Cost sensitive learning by cost-proportionate example weighting. IEEE International Conference on Data Mining, 2003. (第八講:Weighted Classification)
  • G. Sever, A. Lee. Linear Regression Analysis, 2nd Edition, Wiley, 2003. (第九講:Linear Regression 由統計學的角度來分析;第十二到十三講:Polynomial Transform 後再做 Linear Regression)
  • D. C. Hoaglin, R. E. Welsch. The hat matrix in regression and ANOVA. American Statistician, 32:17–22, 1978. (第九講:Linear Regression 的 Hat Matrix)
  • D. W. Hosmer, Jr., S. Lemeshow, R. X. Sturdivant. Applied Logistic Regression, 3rd Edition, Wiley, 2013 (第十講:Logistic Regression 由統計學的角度來分析)
  • T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. International Conference on Machine Learning, (第十一講:Stochastic Gradient Descent 用在線性模型的理論分析)
  • R. Rifkin, A. Klautau. In Defense of One-Vs-All Classification. Journal of Machine Learning Research, 5: 101-141, 2004. (第十一講:One-versus-all)
  • J. Fürnkranz. Round Robin Classification. Journal of Machine Learning Research, 2: 721-747, 2002. (第十一講:One-versus-one)
  • L. Li, H.-T. Lin. Optimizing 0/1 loss for perceptrons by random coordinate descent. In Proceedings of the 2007 International Joint Conference on Neural Networks (IJCNN ’07), pages 749–754, 2007. (第十一講:一個由最佳化角度出發的 Perceptron Algorithm)
  • G.-X. Yuan, C.-H. Ho, C.-J. Lin. Recent advances of large-scale linear classification. Proceedings of IEEE, 2012. (第十一講:更先進的線性分類方法)
  • Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, C.-J. Lin. Training and testing low-degree polynomial data mappings via linear SVM. Journal of Machine Learning Research, 11(2010), 1471-1490. (第十二講:一個使用多項式轉換加上線性分類模型的方法)
  • M. Magdon-Ismail, A. Nicholson, Y. S. Abu-Mostafa. Learning in the presence of noise. In Intelligent Signal Processing. IEEE Press, 2001. (第十三講:Noise 和 Learning)
  • A. Neumaier, Solving ill-conditioned and singular linear systems: A tutorial on regularization, SIAM Review 40 (1998), 636-666. (第十四講:Regularization)
  • T. Poggio, S. Smale. The mathematics of learning: Dealing with data. Notices of the American Mathematical Society, 50(5):537–544, 2003. (第十四講:Regularization)
  • P. Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika, 76(3): 503–514, 1989. (第十五講:Cross Validation)
  • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial intelligence (IJCAI ’95), volume 2, 1137–1143, 1995. (第十五講:Cross Validation)
  • A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Information Processing Letters, 24(6):377–380, 1987. (第十六講:Occam's Razor)

网络资源参考

  1. 機器學習基石 机器学习基石(Machine Learning Foundations) 作业1 习题解答
  2. 台大林轩田《机器学习基石》学习笔记:重要工具一(Feature transform)
  3. 台大林轩田机器学习课程笔记3----机器学习的可行性
  4. 台大林轩田·机器学习基石记要
  5. 林轩田--机器学习基石&机器学习技法
  6. 台大机器学习技法学习笔记
  7. 机器学习技法--Blending and Bagging
  8. 台大林轩田·机器学习技法记要
  9. 不可错过的MOOC:台大《机器学习技法》



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap