• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

DMTSource/daily-stock-forecast: Daily Stock Forecasts using Machine Learning &am ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

DMTSource/daily-stock-forecast

开源软件地址(OpenSource Url):

https://github.com/DMTSource/daily-stock-forecast

开源编程语言(OpenSource Language):

HTML 72.6%

开源软件介绍(OpenSource Introduction):

Daily Stock Forecast

Daily Stock Forecasts optimizes and ranks machine learning models to predict the intraday movement of the stock market for the top 10 US Equities by Market Cap and a number of popular indicies.

http://daily-stock-forecast.com/

Screenshots of Daily Stock Forecast live and in action:

Features

Every trading day, DSF builds a number of classification models using historical candle+volume data. Each model's hyperparameters are optimized as well as the length of the lookback period per sample. Classification reprots are generated using test data. The f1 score is used to rank models.

File Structure

Key files in the application hierarchy.

  • polymer-site

    • a simple Polymer Starter Kit is used to build a responsive website.
  • backend

    • forecast generation script & helpers

Installation

The frontend runs on a Google App Engine instance. It utilizes python, WebApp2, Jinja2 templating, JQuery, Google Charts, and soon Polymer and web components.

The backend and analysis can run locally if the datastore writing is disabled, but the current datastore exchange expects that the forecast is performed "inside the project" on a Google Compute Engine instance with the ability to securely access the Datastore.

Dependencies

  • Python 2.7+
  • numpy
  • pandas
  • pandas-datastore==0.5.0
  • pytz
  • scikit-learn
  • Polymer 2+

Usage

python daily-stock-forecast.py

Credits/Contact

Daily Stock Forecast was developed by Derek M Tishler,
https://www.linkedin.com/in/derekmtishler/




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
jaberg/skdata: Data sets for machine learning in Python发布时间:2022-08-19
下一篇:
shantnu/Titanic-Machine-Learning发布时间:2022-08-19
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap