• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

hmishra2250/Botnet-Detection-using-Machine-Learning: Repository of Bachelor' ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

hmishra2250/Botnet-Detection-using-Machine-Learning

开源软件地址(OpenSource Url):

https://github.com/hmishra2250/Botnet-Detection-using-Machine-Learning

开源编程语言(OpenSource Language):

Jupyter Notebook 96.9%

开源软件介绍(OpenSource Introduction):

Botnet Detection using Machine Learning

Repository of B.Tech Project on Botnet Detection using Network Traffic Behaviour Analysis and Machine Learning
Here we present Behavioral flow based Botnet detection approach using modern Machine Learning techniques such as Latest Classifiers and their combinations using Ensembling Techniques.
We also present a custom coded Flow Generator for Flow Identification and feature generation to characterize the network traffic.
Dataset used for analysis: Botnet Dataset by ISCX UNB, Canada

Index

The description of the files and folders are:

  1. Botnet Docs contains some relevant Documents on Botnets and previous work
  2. Custom Flow Generator consists of a python implementation to extract the Bidirectional Traffic Flows and generate Flow Based Features to be used later for Machine Learning.
  3. ISCXFlowMeterMaster contains Flow generator given by ISCX. However the flow generator used in this project was custom written inline and also abstracted out for Traffic Analysis.
  4. Deep Learning Folder contains code for deep learning analysis of dataset and the results
  5. Rest are some code files done for analysis in no particular order

Citing

@misc{BDMLhmishra2250
  author = {Himadri Mishra, Kartik Manchanda},
  title = {Botnet Detection using Machine Learning},
  year = {2017},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hmishra2250/Botnet-Detection-using-Machine-Learning}},
  commit = {60793b9ae60d5bc30fb9738a4365fc7aa1d5064a}
}



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap