• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

PnYuan/Practice-of-Machine-Learning: code of scattered practices when studying ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

PnYuan/Practice-of-Machine-Learning

开源软件地址(OpenSource Url):

https://github.com/PnYuan/Practice-of-Machine-Learning

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Practice of MachineLearning(机器学习练习的一些代码托管)


here is a repository of scattered studies of "machine-learning".

for more info, welcome to my blog: Yuan's Homepage or Snoopy_Yuan的博客

List

  • code; Kaggle-Avazu-CTR-Prediction experiments based on LR、GBDT、GBDT-LR using sklearn and FM、FFM using xlearn.(python code here).
  • code; Kaggle-Titanic experiments based on Decision Tree using sklearn.(python code here).
  • code; MNIST experiments based on Softmax, MLP, CNN using Tensorflow.(python code here).
  • code; ensemble learning experiment based on RF(Random Forest) and GBDT(Gradient Boosting Decision Tree) using sklearn.(python code here).
  • code; MNIST experiment based on CNN (Convolutional Neural Networks) using Theano.(python code here).
  • code; MNIST experiment based on MLP (Multilayer Perceptron) using Theano.(python code here).
  • code; implementation of standard BP algorithm.(python code here).
  • code; implementation practice of BP network based on PyBrain.(python code here)
  • note; parameter learning of Bayesian Network(BN).



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
udacity/br-machine-learning发布时间:2022-08-18
下一篇:
cyberdefendersprogram/MachineLearning发布时间:2022-08-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap