• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

SJD1882/MOOC-Coursera-Advanced-Machine-Learning: Content from Coursera's ADV ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

SJD1882/MOOC-Coursera-Advanced-Machine-Learning

开源软件地址(OpenSource Url):

https://github.com/SJD1882/MOOC-Coursera-Advanced-Machine-Learning

开源编程语言(OpenSource Language):

Jupyter Notebook 99.7%

开源软件介绍(OpenSource Introduction):

Advanced Machine Learning Coursera MOOC Specialization

National Research University Higher School of Economics - Yandex

Coursera Webpage

Syllabus

This specialization gives an introduction to deep learning, reinforcement learning, natural language understanding, computer vision and Bayesian methods. Top Kaggle machine learning practitioners and CERN scientists will share their experience of solving real-world problems and help you to fill the gaps between theory and practice. Upon completion of 7 courses you will be able to apply modern machine learning methods in enterprise and understand the caveats of real-world data and settings.

You will master your skills by solving a wide variety of real-world problems like image captioning and automatic game playing throughout the course projects. You will gain the hands-on experience of applying advanced machine learning techniques that provide the foundation to the current state-of-the art in AI.


Table of Contents

1 - Introduction to Deep Learning (certified completion)

  • week 1: Optimization
  • week 2: Multilayer Perceptron and introduction to Tensorflow/Keras
  • week 3: Convolutional Neural Networks
  • week 4: Autoencoders and Generative Adversarial Networks
  • week 5: Recurrent Neural Networks
  • Final Project: Image Captioning

2 - How to Win a Data Science Competition: Learn From Top Kagglers (certified completion)

  • week 1: Feature Preprocessing and Engineering
  • week 2: Exploratory Data Analysis, Validation Strategies and Data Leakages
  • week 3: Metric Optimization and Advanced Feature Engineering I
  • week 4: Hyperparameter Optimization, Advanced Feature Engineering II and Ensembling
  • Final Project: Kaggle Competition (Predict Future Sales)

3 - Bayesian Methods for Machine Learning (certified completion)

  • week 1: Refresher on Bayesian probability theory
  • week 2: Expectation-Maximization algorithm and Gaussian Mixture Models
  • week 3: Variational Inference and Latent Dirichlet Allocation
  • week 4: Markov Chain Monte Carlo
  • week 5: Bayesian Neural Networks and Variational Autoencoders
  • week 6: Gaussian Processes and Bayesian Optimization
  • Final Project: Forensics to generate images of suspects

4 - Natural Language Processing (ON HOLD)

  • week 1: Text Classification with Linear Models
  • week 2: Language Modelling with Probabilistic Graphical Models and Neural Networks
  • week 3: Word Embeddings and Topic Models
  • week 4: Machine Translation and Sequence-To-Sequence Models
  • Final Project: StackOverflow Task-Oriented Chatbot

5 - Practical Reinforcement Learning (certified completion)

  • week 1: Introduction to Reinforcement Learning
  • week 2: Model-Based Reinforcement Learning (Dynamic Programming)
  • week 3: Model-Free Reinforcement Learning (SARSA, Monte Carlo, Q-Learning)
  • week 4: Approximate and Deep Reinforcement Learning (Deep Q-Learning)
  • week 5: Policy Gradient Reinforcement Learning
  • week 6: Advanced Topics on Exploration and Planning

Future courses

6 - Addressing Large Hadron Collider Challenges by Machine Learning (ON HOLD)

7 - Deep Learning in Computer Vision (ON HOLD)




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap