• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

mdozmorov/MachineLearning_notes: Machine learning and deep learning resources

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

mdozmorov/MachineLearning_notes

开源软件地址(OpenSource Url):

https://github.com/mdozmorov/MachineLearning_notes

开源编程语言(OpenSource Language):


开源软件介绍(OpenSource Introduction):

Machine- and Deep Learning resources

MIT License PR's Welcome

Machine and deep learning and data analysis resources. Please, contribute and get in touch! See MDmisc notes for other programming and genomics-related notes.

Table of content

Cheatsheets

Machine learning

ML Books

ML Courses & Tutorials

ML Videos

ML Papers

  • Domingos, Pedro. “A Few Useful Things to Know about Machine Learning.” Communications of the ACM 55, no. 10 (October 1, 2012): 78. https://doi.org/10.1145/2347736.2347755. Twelve lessons for machine learning. Overview of machine learning problems and algorithms, problem of overfitting, causes and solutions, curse of dimensionality, issues with high-dimensional data, feature engineering, bagging, boosting, stacking, model sparsity. Video lectures

ML Tools

  • mlr3 - Machine learning in R R package, the unified interface to classification, regression, survival analysis, and other machine learning tasks. GitHub repo, mlr3gallery - Examples of problems and code solutions, mlr3 Manual - mlr3 bookdown. More on the mlr3 package site, including videos

ML Misc

Deep Learning

Keras, Tensorflow

PyTorch

  • Awesome-Pytorch-list - A comprehensive list of pytorch related content on github,such as different models,implementations,helper libraries, tutorials etc. Tweet

  • DEEP LEARNING with PyTorch by Yann LeCun & Alfredo Canziani. Videos, transcripts, slides, practicals. YouTube playlist

  • pytorch-tutorial - PyTorch Tutorial for Deep Learning Researchers. Basic, Intermediate, and Advanced code examples, by Yunjey Choi

  • the-incredible-pytorch - The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

  • tutorials - official PyTorch tutorials, with videos. Website

  • Zero to GANs - PyTorch, video course and Jupyter notebooks

Graph Neural Networks

DL Books

DL Courses & Tutorials

DL Videos

DL Papers

  • DeepMind Research - implementations and illustrative code to accompany DeepMind publications. Jupyter notebooks and data, list of projects

  • Lee, Benjamin D, Anthony Gitter, Casey S Greene, Sebastian Raschka, Finlay Maguire, Alexander J Titus, Michael D Kessler, et al. “Ten Quick Tips for Deep Learning in Biology.” ArXiv 29 May 2021 - 1. Use appropriate method; 2. Establish baseline; 3. Train reproducibly; 4. Know your data; 5. Select sensible architecture; 6. Optimize hyperparameters; 7. Mitigate overfitting; 8. Maximize interpretability; 9. Avoid over-interpretation; 10. Prioritize research ethics. Summary in Figure 1. References. Latest version

  • Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need,” arXiv:1706.03762, 6 Dec 2017 - Transformer paper. Illustrated Guide to Transformers Neural Network: A step by step explanation - 15 min video. The Annotated Transformer - PyTorch implementation of the original transformer paper. The Illustrated Transformer - blog post by Jay Alammar explaining Transformer architecture. Tweet - best resources to learn Transformers

  • Sebastian Ruder, “An Overview of Gradient Descent Optimization Algorithms.” June 15, 2017 - Gradient descent optimization algorithm review, by . Definitions, intuitive progression of algorithm improvements. Gradient descent variants: Batch, Stochastic, Mini-batch. Gradient descent algorithme: Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, AdaMax, Nadam. Visualizattion. Parallel implementations.

  • eugeneyan/applied-ml - Papers & tech blogs by companies s


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
mlrun/mlrun: Machine Learning automation and tracking发布时间:2022-08-18
下一篇:
AliceDudu/Machine-Learning-Learning-Path发布时间:2022-08-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap