• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

tensorflow/quantum: Hybrid Quantum-Classical Machine Learning in TensorFlow

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

tensorflow/quantum

开源软件地址(OpenSource Url):

https://github.com/tensorflow/quantum

开源编程语言(OpenSource Language):

Python 67.7%

开源软件介绍(OpenSource Introduction):

TensorFlow Quantum


TensorFlow Quantum (TFQ) is a Python framework for hybrid quantum-classical machine learning that is primarily focused on modeling quantum data. TFQ is an application framework developed to allow quantum algorithms researchers and machine learning applications researchers to explore computing workflows that leverage Google’s quantum computing offerings, all from within TensorFlow.

Motivation

Quantum computing at Google has hit an exciting milestone with the achievement of Quantum Supremacy. In the wake of this demonstration, Google is now turning its attention to developing and implementing new algorithms to run on its Quantum Computer that have real world applications.

To provide users with the tools they need to program and simulate a quantum computer, Google is working on Cirq. Cirq is designed for quantum computing researchers who are interested in running and designing algorithms that leverage existing (imperfect) quantum computers.

TensorFlow Quantum provides users with the tools they need to interleave quantum algorithms and logic designed in Cirq with the powerful and performant ML tools from TensorFlow. With this connection we hope to unlock new and exciting paths for Quantum Computing research that would not have otherwise been possible.

Installation

See the installation instructions.

Examples

All of our examples can be found here in the form of Python notebook tutorials

Report issues

Report bugs or feature requests using the TensorFlow Quantum issue tracker.

We also have a Stack Overflow tag for more general TFQ related discussions.

In the meantime check out the install instructions to get the experimental code running!

Contributing

We are eager to collaborate with you! TensorFlow Quantum is still a very young code base, if you have ideas for features that you would like added feel free to check out our Contributor Guidelines to get started.

References

If you use TensorFlow Quantum in your research, please cite:

TensorFlow Quantum: A Software Framework for Quantum Machine Learning arXiv:2003.02989, 2020.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
alan-turing-institute/sktime: A unified framework for machine learning with time ...发布时间:2022-08-18
下一篇:
Zhenye-Na/machine-learning-uiuc: 发布时间:2022-08-18
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap