在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):krasserm/machine-learning-notebooks开源软件地址(OpenSource Url):https://github.com/krasserm/machine-learning-notebooks开源编程语言(OpenSource Language):Jupyter Notebook 99.4%开源软件介绍(OpenSource Introduction):Machine learning notebooksThis project contains solutions to the Stanford Machine Learning course exercises implemented with Python and scikit-learn. The scikit-learn machine learning library provides optimized implementations for all algorithms presented in the course and needed in the course exercises. Instead of writing low-level Octave code, as required by the course, the solutions presented here demonstrate how to use scikit-learn to solve these exercises on a much higher level. It is a level that is closer to that of real-world machine learning projects. This project respects the Coursera Honor Code as the presented solutions can't be used to derive the lower-level Octave code that must be written to complete the assignments. I developed these solutions while learning Python and its scientific programming libraries such as NumPy, SciPy, pandas and matplotlib in a machine learning context. The solutions are provided as Jupyter notebooks. Developers new to scikit-learn hopefully find them useful to see how the machine learning topics covered in the course relate to the scikit-learn API. In their current state, the notebooks neither explain machine learning basics nor introduce the used libraries. For learning machine learning basics I highly recommend attending the course lectures. For an introduction to the used libraries the following tutorials are a good starting point:
Course exercises
|
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论