• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Gautam-J/Machine-Learning: Implementation of different ML Algorithms from scratc ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Gautam-J/Machine-Learning

开源软件地址(OpenSource Url):

https://github.com/Gautam-J/Machine-Learning

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

Machine Learning Algorithms

Implementation of different machine learning algorithms written in Python.

Contents

Installation of libraries

pip install -r requirements.txt

NOTE: scikit-learn module is used only for accessing the datasets and scalers.

Usage

python run_{algorithmToRun}.py

NOTE: All scripts have additional command arguments that can be given by the user.

python run_{algorithmToRun}.py --help

Summary

This project was initially started to help understand the math and intuition behind different ML algorithms, and why they work or don't work, for a given dataset. I started it with just implementing different versions of gradient descent for Linear Regression. I also wanted to visualize the training process, to get a better intuition of what exactly happens during the training process. Over the course of time, more algorithms and visualizations have been added.

Algorithms and Visualizations

Gradient Descent 2D

Gradient Descent 3D

Gradient Descent with LARGE Momentum 2D

Gradient Descent with LARGE Momentum 3D

NOTE: Large value of momentum has been used to exaggerate the effect of momentum in gradient descent, for visualization purposes. The default value of momentum is set to 0.3, however 0.75 and 0.8 was used in the visualization for 2D and 3D respectively.

Linear Regression

Linear Regression for a non-linear dataset

This was achieved by adding polynomial features.

Logistic Regression

Logistic Regression for a non-linear dataset

This was achieved by adding polynomial features.

K Nearest Neighbors 2D

K Nearest Neighbors 3D

KMeans 2D

KMeans 3D

Links

Link to first Reddit post

Link to second Reddit post

Citations

Sentdex: ML from scratch

Coursera Andrew NG: Machine Learning

Todos

  • SVM classification, gaussian kernel
  • Mean Shift
  • PCA
  • DecisionTree
  • Neural Network



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap