• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

junku901/machine_learning: Machine learning library for Node.js

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

junku901/machine_learning

开源软件地址(OpenSource Url):

https://github.com/junku901/machine_learning

开源编程语言(OpenSource Language):

JavaScript 100.0%

开源软件介绍(OpenSource Introduction):

machine_learning

Machine learning library for node.js. You can also use this library in browser.

Demo in Browser!

API Documentation

Installation

Node.js

$ npm install machine_learning

To use this library in browser, include machine_learning.min.js file.

<script src="/js/machine_learning.min.js"></script>

Demo in Browser!

Here is the API Documentation. (Still in progress)

Features

  • Logistic Regression
  • MLP (Multi-Layer Perceptron)
  • SVM (Support Vector Machine)
  • KNN (K-nearest neighbors)
  • K-means clustering
  • 3 Optimization Algorithms (Hill-Climbing, Simulated Annealing, Genetic Algorithm)
  • Decision Tree
  • NMF (non-negative matrix factorization)

Implementation Details

SVM is using Sequential Minimal Optimization (SMO) for its training algorithm.

For Decision Tree, Classification And Regression Tree (CART) was used for its building algorithm.

Usage

Logistic Regression

var ml = require('machine_learning');
var x = [[1,1,1,0,0,0],
         [1,0,1,0,0,0],
         [1,1,1,0,0,0],
         [0,0,1,1,1,0],
         [0,0,1,1,0,0],
         [0,0,1,1,1,0]];
var y = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1],
         [0, 1],
         [0, 1]];

var classifier = new ml.LogisticRegression({
    'input' : x,
    'label' : y,
    'n_in' : 6,
    'n_out' : 2
});

classifier.set('log level',1);

var training_epochs = 800, lr = 0.01;

classifier.train({
    'lr' : lr,
    'epochs' : training_epochs
});

x = [[1, 1, 0, 0, 0, 0],
     [0, 0, 0, 1, 1, 0],
     [1, 1, 1, 1, 1, 0]];

console.log("Result : ",classifier.predict(x));

MLP (Multi-Layer Perceptron)

var ml = require('machine_learning');
var x = [[0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.5, 0.3,  0.5, 0.,  0.,  0.],
         [0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.,  0.,  0.5, 0.3, 0.5, 0.],
         [0.,  0.,  0.5, 0.4, 0.5, 0.],
         [0.,  0.,  0.5, 0.5, 0.5, 0.]];
var y = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1],
         [0, 1],
         [0, 1]];

var mlp = new ml.MLP({
    'input' : x,
    'label' : y,
    'n_ins' : 6,
    'n_outs' : 2,
    'hidden_layer_sizes' : [4,4,5]
});

mlp.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.

mlp.train({
    'lr' : 0.6,
    'epochs' : 20000
});

a = [[0.5, 0.5, 0., 0., 0., 0.],
     [0., 0., 0., 0.5, 0.5, 0.],
     [0.5, 0.5, 0.5, 0.5, 0.5, 0.]];

console.log(mlp.predict(a));

SVM (Support Vector Machine)

var ml = require('machine_learning');
var x = [[0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.5, 0.3,  0.5, 0.,  0.,  0.01],
         [0.4, 0.8, 0.5, 0.,  0.1,  0.2],
         [1.4, 0.5, 0.5, 0.,  0.,  0.],
         [1.5, 0.3,  0.5, 0.,  0.,  0.],
         [0., 0.9, 1.5, 0.,  0.,  0.],
         [0., 0.7, 1.5, 0.,  0.,  0.],
         [0.5, 0.1,  0.9, 0.,  -1.8,  0.],
         [0.8, 0.8, 0.5, 0.,  0.,  0.],
         [0.,  0.9,  0.5, 0.3, 0.5, 0.2],
         [0.,  0.,  0.5, 0.4, 0.5, 0.],
         [0.,  0.,  0.5, 0.5, 0.5, 0.],
         [0.3, 0.6, 0.7, 1.7,  1.3, -0.7],
         [0.,  0.,  0.5, 0.3, 0.5, 0.2],
         [0.,  0.,  0.5, 0.4, 0.5, 0.1],
         [0.,  0.,  0.5, 0.5, 0.5, 0.01],
         [0.2, 0.01, 0.5, 0.,  0.,  0.9],
         [0.,  0.,  0.5, 0.3, 0.5, -2.3],
         [0.,  0.,  0.5, 0.4, 0.5, 4],
         [0.,  0.,  0.5, 0.5, 0.5, -2]];

var y =  [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1];

var svm = new ml.SVM({
    x : x,
    y : y
});

svm.train({
    C : 1.1, // default : 1.0. C in SVM.
    tol : 1e-5, // default : 1e-4. Higher tolerance --> Higher precision
    max_passes : 20, // default : 20. Higher max_passes --> Higher precision
    alpha_tol : 1e-5, // default : 1e-5. Higher alpha_tolerance --> Higher precision

    kernel : { type: "polynomial", c: 1, d: 5}
    // default : {type : "gaussian", sigma : 1.0}
    // {type : "gaussian", sigma : 0.5}
    // {type : "linear"} // x*y
    // {type : "polynomial", c : 1, d : 8} // (x*y + c)^d
    // Or you can use your own kernel.
    // kernel : function(vecx,vecy) { return dot(vecx,vecy);}
});

console.log("Predict : ",svm.predict([1.3,  1.7,  0.5, 0.5, 1.5, 0.4]));

KNN (K-nearest neighbors)

var ml = require('machine_learning');

var data = [[1,0,1,0,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,0,1,1,1,0,1,0,0,0,1,0],
            [1,0,1,1,1,1,1,1,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,1],
            [0,0,1,0,0,1,0,0,1,0,1,1,1,0],
            [0,0,0,0,0,0,1,1,1,0,1,1,1,0],
            [0,0,0,0,0,1,1,1,0,1,0,1,1,0],
            [0,0,1,0,1,0,1,1,1,1,0,1,1,1],
            [0,0,0,0,0,0,1,1,1,1,1,1,1,1],
            [1,0,1,0,0,1,1,1,1,1,0,0,1,0]
           ];

var result = [23,12,23,23,45,70,123,73,146,158,64];

var knn = new ml.KNN({
    data : data,
    result : result
});

var y = knn.predict({
    x : [0,0,0,0,0,0,0,1,1,1,1,1,1,1],
    k : 3,

    weightf : {type : 'gaussian', sigma : 10.0},
    // default : {type : 'gaussian', sigma : 10.0}
    // {type : 'none'}. weight == 1
    // Or you can use your own weight f
    // weightf : function(distance) {return 1./distance}

    distance : {type : 'euclidean'}
    // default : {type : 'euclidean'}
    // {type : 'pearson'}
    // Or you can use your own distance function
    // distance : function(vecx, vecy) {return Math.abs(dot(vecx,vecy));}
});

console.log(y);

K-means clustering

var ml = require('machine_learning');

var data = [[1,0,1,0,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,0,1,1,1,0,1,0,0,0,1,0],
            [1,0,1,1,1,1,1,1,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,1],
            [0,0,1,0,0,1,0,0,1,0,1,1,1,0],
            [0,0,0,0,0,0,1,1,1,0,1,1,1,0],
            [0,0,0,0,0,1,1,1,0,1,0,1,1,0]< 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap