在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):ujsyehao/mobilenetv3-ssd开源软件地址(OpenSource Url):https://github.com/ujsyehao/mobilenetv3-ssd开源编程语言(OpenSource Language):Python 100.0%开源软件介绍(OpenSource Introduction):mobilenetv3-ssd
BackboneReference paper: MobileNetv3 https://arxiv.org/pdf/1905.02244.pdf We mainly train mobilenetv3-ssd detection network rather than classification network, for convenience, we use trained mobiletnetv3-large network from https://github.com/xiaolai-sqlai/mobilenetv3 (We are also trying to use https://github.com/rwightman/gen-efficientnet-pytorch provided mobilenetv3-large classification network) open-source mobilenetv3-large classification network
For extra-body, we use 1x1 conv + 3x3 dw conv + 1x1 conv block follow mobilenetv2-ssd setting(official tensorflow version), details below: 1x1 256 conv -> 3x3 256 s=2 conv -> 1x1 512 conv 1x1 128 conv -> 3x3 128 s=2 conv -> 1x1 256 conv 1x1 128 conv -> 3x3 128 s=2 conv -> 1x1 256 conv 1x1 64 conv -> 3x3 64 s=2 conv -> 1x1 128 conv HeadFor head, we use 3x3 dw conv + 1x1 conv block follow mobilenetv2-ssd-lite setting(official tensorflow version) We choose 6 feature maps to predict box coordinates and label, their dimenstions are 19x19, 10x10, 5x5, 3x3, 2x2, 1x1. their anchor numbers are 4, 6, 6, 6, 4, 4. TrainingWe train mobilenetv3-ssd use mmdetection framework(based on pytorch), we use PASCAL VOC0712 trainval dataset to train, it reaches 71.7mAP on VOC2007 test dataset. img test: Convert mobilenetv3-ssd pytorch model to ncnn framework
How to use mobilenetv3-ssd in ncnn frameworkyou can refer to https://github.com/Tencent/ncnn/blob/master/examples/mobilenetv3ssdlite.cpp model linkmobilenetv3-ssd pytorch model 百度网盘链接: https://pan.baidu.com/s/1sTGrTHxpv4yZJUpTJD8BNw 提取码: sid9 mobilenetv3-ssd ncnn model 百度网盘链接: https://pan.baidu.com/s/1zBqGnp4utJGi6-IzYs7lTg 提取码: phdx google drive link: https://drive.google.com/file/d/11_C_ko-arXnzM60udcXOMM5_PDNXuCcs/view?usp=sharing |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论