• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Randl/MobileNetV3-pytorch: Implementation of MobileNetV3 in pytorch

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Randl/MobileNetV3-pytorch

开源软件地址(OpenSource Url):

https://github.com/Randl/MobileNetV3-pytorch

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

MobileNetV3 in PyTorch

An implementation of MobileNetV3 in PyTorch. MobileNetV3 is an efficient convolutional neural network architecture for mobile devices. For more information check the paper: Searching for MobileNetV3

Usage

Clone the repo:

git clone https://github.com/Randl/MobileNetV3-pytorch
pip install -r requirements.txt

Use the model defined in MobileNetV3.py to run ImageNet example:

python3 -m torch.distributed.launch --nproc_per_node=8 imagenet.py --dataroot "/path/to/imagenet/" --sched clr -b 128 --seed 42 --world-size 8 --sync-bn```

To continue training from checkpoint

python imagenet.py --dataroot "/path/to/imagenet/" --resume "/path/to/checkpoint/folder"

Results

WIP

Classification Checkpoint MACs (M) Parameters (M) Top-1 Accuracy Top-5 Accuracy Claimed top-1 Claimed top-5 Inference time
MobileNetV3 Large x1.0 224 219.80 5.481 73.53 91.14 75.2 - ~258ms
mobilenet_v2_1.0_224 300 3.47 72.10 90.48 71.8 91.0 ~461ms

Inference time is for single 1080 ti per batch of 128.

You can test it with

python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenetv3large-v1/model_best0.pth.tar" -e

Other implementations

Code used




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap