在线时间:8:00-16:00
迪恩网络APP
随时随地掌握行业动态
扫描二维码
关注迪恩网络微信公众号
开源软件名称(OpenSource Name):cogsys-tuebingen/mobilestereonet开源软件地址(OpenSource Url):https://github.com/cogsys-tuebingen/mobilestereonet开源编程语言(OpenSource Language):Python 100.0%开源软件介绍(OpenSource Introduction):MobileStereoNetThis repository contains the code for "MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching", presented at WACV 2022 [Paper] [Supp] [arXiv] [Video Presentation]. Evaluation ResultsMobileStereoNets are trained and tested using SceneFlow (SF), KITTI and DrivingStereo (DS) datasets.
Results on KITTI 2015 validationPredictions of difference networks Results on KITTI 2015 LeaderboardLeaderboard Computational ComplexityRequirements for computing the complexity by two methods: pip install --upgrade git+https://github.com/sovrasov/flops-counter.pytorch.git
pip install --upgrade git+https://github.com/Lyken17/pytorch-OpCounter.git
pip install onnx Run the following command to see the complexity in terms of number of operations and parameters. python cost.py You can also compute the complexity of each part of the network separately. For this, the input size of each module has been written in InstallationRequirementsThe code is tested on:
Setting up the environmentconda env create --file mobilestereonet.yml
conda activate mobilestereonet SceneFlow Dataset PreparationDownload the finalpass images and the disparity data for SceneFlow FlyingThings3D, Driving and Monkaa. For both, image and disparity data, move the directories in the TRAIN and TEST directories of the Driving and Monkaa Dataset (15mm_focallength/35mm_focallength for Driving, funnyworld_x2 etc. for Monkaa) into the FlyingThings3D TRAIN and TEST directories, respectively. It should look like this:
TrainingSet a variable for the dataset directory, e.g. Pretraining on SceneFlowpython train.py --dataset sceneflow --datapath $DATAPATH --trainlist ./filenames/sceneflow_train.txt --testlist ./filenames/sceneflow_test.txt --epochs 20 --lrepochs "10,12,14,16:2" --batch_size 8 --test_batch_size 8 --model MSNet2D Finetuning on KITTIpython train.py --dataset kitti --datapath $DATAPATH --trainlist ./filenames/kitti15_train.txt --testlist ./filenames/kitti15_val.txt --epochs 400 --lrepochs "200:10" --batch_size 8 --test_batch_size 8 --loadckpt ./checkpoints/pretrained.ckpt --model MSNet2D The arguments in both cases can be set differently depending on the model, dataset and hardware resources. PredictionThe following script creates disparity maps for a specified model: python prediction.py --datapath $DATAPATH --testlist ./filenames/kitti15_test.txt --loadckpt ./checkpoints/finetuned.ckpt --dataset kitti --colored True --model MSNet2D CreditsThe implementation of this code is based on PSMNet and GwcNet. Also, we would like to thank the authors of THOP: PyTorch-OpCounter, Flops counter and KITTI python utils. LicenseThis project is released under the Apache 2.0 license. CitationIf you use this code, please cite this paper:
ContactThe repository is maintained by Faranak Shamsafar. |
2023-10-27
2022-08-15
2022-08-17
2022-09-23
2022-08-13
请发表评论