• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

miraclewkf/MobileNetV2-PyTorch: This is the PyTorch implement of MobileNet V2

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

miraclewkf/MobileNetV2-PyTorch

开源软件地址(OpenSource Url):

https://github.com/miraclewkf/MobileNetV2-PyTorch

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

This is the PyTorch implement of MobileNet V2 (train on ImageNet dataset)

Paper: Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segment

Usage

Prepare data

This code takes ImageNet dataset as example. You can download ImageNet dataset and put them as follows. I only provide ILSVRC2012_dev_kit_t12 due to the restriction of memory, in other words, you need download ILSVRC2012_img_train and ILSVRC2012_img_val.

├── train.py # train script
├── MobileNetV2.py # network of MobileNetV2
├── read_ImageNetData.py # ImageNet dataset read script
├── ImageData # train and validation data
	├── ILSVRC2012_img_train
		├── n01440764
		├──    ...
		├── n15075141
	├── ILSVRC2012_img_val
	├── ILSVRC2012_dev_kit_t12
		├── data
			├── ILSVRC2012_validation_ground_truth.txt
			├── meta.mat # the map between train file name and label

Train

  • If you want to train from scratch, you can run as follows:
python train.py --batch-size 256 --gpus 0,1,2,3
  • If you want to train from one checkpoint, you can run as follows(for example train from epoch_4.pth.tar, the --start-epoch parameter is corresponding to the epoch of the checkpoint):
python train.py --batch-size 256 --gpus 0,1,2,3 --resume output/epoch_4.pth.tar --start-epoch 4



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap