• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

tanluren/mobilenetv3-yolov3: An experiment of transferring backbone of yolov3 in ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

tanluren/mobilenetv3-yolov3

开源软件地址(OpenSource Url):

https://github.com/tanluren/mobilenetv3-yolov3

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

mobilenetv3-yolov3

An experiment of transferring backbone of yolov3 into mobilenetv3 which is implemented by TF/Keras and inspired by qqwweee/keras-yolo3 and xiaochus/MobileNetV3

Training

Generate your own annotation file and class names file.
One row for one image;
Row format: image_file_path box1 box2 ... boxN;
Box format: x_min,y_min,x_max,y_max,class_id (no space).
For VOC dataset, try python voc_annotation.py
Here is an example:

        path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3
        path/to/img2.jpg 120,300,250,600,2
...

Modify train.py and start training.
python train.py

If you want to train from scratch ,set load_pretrained=False ;if training was interupted , you can set load_pretrained=True and load weights from weights_path ,then restart training.

Usage

Use --help to see usage of yolo_video.py:

usage: yolo_video.py [-h] [--model MODEL] [--anchors ANCHORS]
                  [--classes CLASSES] [--gpu_num GPU_NUM] [--image]
                  [--input] [--output]

positional arguments:
  --input Video input path
  --output Video output path

optional arguments:
  -h, --help show this help message and exit
  --model MODEL path to model weight file, default model_data/yolo.h5
  --anchors ANCHORS path to anchor definitions, default
          model_data/yolo_anchors.txt
  --classes CLASSES path to class definitions, default
          model_data/coco_classes.txt
  --gpu_num GPU_NUM Number of GPU to use, default 1
  --image Image detection mode, will ignore all positional arguments




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap