开源软件名称(OpenSource Name): fsx950223/mobilenetv2-yolov3开源软件地址(OpenSource Url): https://github.com/fsx950223/mobilenetv2-yolov3开源编程语言(OpenSource Language):
Python
74.5%
开源软件介绍(OpenSource Introduction): Mobilenetv2-Yolov3
Tensorflow implementation mobilenetv2-yolov3 and efficientnet-yolov3 inspired by keras-yolo3
Update
Backend:
Callback:
Loss:
Train:
Tensorflow:
Serving:
Usage
Install:
pip install -r requirements.txt
Get help info:
Train:
Format file name like [name]_[number].[extension]
Example:
2. If you are using txt dataset, please format records like [image_path] [,[xmin ymin xmax ymax class]] (for convenience, you can modify voc_text.py to parse your data to specific data format), else you should modify voc_annotation.py, then run
to parse your data to tfrecords.
Example:
/image/path 179 66 272 290 14 172 38 317 349 14 276 2 426 252 14 1 32 498 365 13
3. Run:
python main.py --mode=TRAIN --train_dataset_glob=< your dataset glob> --epochs=50 --epochs=50 --mode=TRAIN
Predict:
python main.py --mode=IMAGE --model=< your_model_path>
MAP:
python main.py --mode=MAP --model=< your_model_path> --test_dataset_glob=< your dataset glob>
Export serving model:
python main.py --mode=SERVING --model=< your_model_path>
Use custom config file:
python main.py --config=mobilenetv2.yaml
Create a web server on project folder
Open browser and enter [your_url:your_port]/tfjs
Resources
Download pascal tfrecords from here .
Download pre-trained mobilenetv2-yolov3 model(VOC2007) here
Download pre-trained efficientnet-yolov3 model(VOC2007) here
Download pre-trained efficientnet-yolov3 model(VOC2007+2012) here
Performance
Network: Mobilenetv2+Yolov3
Input size: 416*416
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.6721874861775297
bicycle ap: 0.7844226664948993
bird ap: 0.6863393529648882
boat ap: 0.5102715372530052
bottle ap: 0.4098093697072679
bus ap: 0.7646277543282962
car ap: 0.8000339732789448
cat ap: 0.8681120849855787
chair ap: 0.4021823009684314
cow ap: 0.6768311030872428
diningtable ap: 0.626045232887253
dog ap: 0.8293983813984888
horse ap: 0.8315961581768014
motorbike ap: 0.771283337747543
person ap: 0.7298645793931624
pottedplant ap: 0.3081565644702266
sheep ap: 0.6510012751038824
sofa ap: 0.6442699680945367
train ap: 0.8025086962000969
tvmonitor ap: 0.6239227675451299
mAP: 0.6696432295131602
GPU inference time (GTX1080Ti): 19ms
CPU inference time (i7-8550U): 112ms
Model size: 37M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.7770436248733187
bicycle ap: 0.822183784348553
bird ap: 0.7346967323068865
boat ap: 0.6142903989882571
bottle ap: 0.4518063126765959
bus ap: 0.782237197681936
car ap: 0.8138978890046222
cat ap: 0.8800232369515162
chair ap: 0.4531520519719176
cow ap: 0.6992367978932157
diningtable ap: 0.6765065569475968
dog ap: 0.8612118810883834
horse ap: 0.8559580684256001
motorbike ap: 0.8027311717682002
person ap: 0.7280218883512792
pottedplant ap: 0.35520418960051925
sheep ap: 0.6833401035128458
sofa ap: 0.6753841073186044
train ap: 0.8107647793504738
tvmonitor ap: 0.6726791558585905
mAP: 0.7075184964459456
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
Network: Efficientnet+Yolov3
Input size: 380*380
Train Dataset: VOC2007+VOC2012
Test Dataset: VOC2007
mAP:
aeroplane ap: 0.8572154850266848
bicycle ap: 0.8129962658687486
bird ap: 0.8325678324285539
boat ap: 0.7061501348114156
bottle ap: 0.5603823420846883
bus ap: 0.8536452418769342
car ap: 0.8395446870008888
cat ap: 0.9200504816535645
chair ap: 0.514644868267842
cow ap: 0.8202171886452714
diningtable ap: 0.7370149790284737
dog ap: 0.900374518831019
horse ap: 0.8632567146990895
motorbike ap: 0.8147344820261591
person ap: 0.7690434789031615
pottedplant ap: 0.4576271726152926
sheep ap: 0.8006580581981677
sofa ap: 0.7478146395952494
train ap: 0.8783508559769437
tvmonitor ap: 0.6923886096918628
mAP: 0.7689339018615006
GPU inference time (GTX1080Ti): 23ms
CPU inference time (i7-8550U): 168ms
Model size: 77M
Reference
paper:
请发表评论