• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

tonylins/pytorch-mobilenet-v2: A PyTorch implementation of MobileNet V2 architec ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

tonylins/pytorch-mobilenet-v2

开源软件地址(OpenSource Url):

https://github.com/tonylins/pytorch-mobilenet-v2

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

A PyTorch implementation of MobileNetV2

This is a PyTorch implementation of MobileNetV2 architecture as described in the paper Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.

[NEW] Add the code to automatically download the pre-trained weights.

Training Recipe

Recently I have figured out a good training setting:

  1. number of epochs: 150
  2. learning rate schedule: cosine learning rate, initial lr=0.05
  3. weight decay: 4e-5
  4. remove dropout

You should get >72% top-1 accuracy with this training recipe!

Accuracy & Statistics

Here is a comparison of statistics against the official TensorFlow implementation.

FLOPs Parameters Top1-acc Pretrained Model
Official TF 300 M 3.47 M 71.8% -
Ours 300.775 M 3.471 M 71.8% [google drive]

Usage

To use the pretrained model, run

from MobileNetV2 import mobilenet_v2

net = mobilenet_v2(pretrained=True)

Data Pre-processing

I used the following code for data pre-processing on ImageNet:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

input_size = 224
train_dataset = datasets.ImageFolder(
    traindir,
    transforms.Compose([
        transforms.RandomResizedCrop(input_size, scale=(0.2, 1.0)), 
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    ]))

train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True,
    num_workers=n_worker, pin_memory=True)

val_loader = torch.utils.data.DataLoader(
    datasets.ImageFolder(valdir, transforms.Compose([
        transforms.Resize(int(input_size/0.875)),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=batch_size, shuffle=False,
    num_workers=n_worker, pin_memory=True)



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap