• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Zehaos/MobileNet: MobileNet build with Tensorflow

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

Zehaos/MobileNet

开源软件地址(OpenSource Url):

https://github.com/Zehaos/MobileNet

开源编程语言(OpenSource Language):

Python 99.3%

开源软件介绍(OpenSource Introduction):

MobileNet

A tensorflow implementation of Google's MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

The official implementation is avaliable at tensorflow/model.

The official implementation of object detection is now released, see tensorflow/model/object_detection.

News

YellowFin optimizer has been intergrated, but I have no gpu resources to train on imagenet with it. Call for training ~_~

Official implement click here

Base Module



Accuracy on ImageNet-2012 Validation Set

Model Width Multiplier Preprocessing Accuracy-Top1 Accuracy-Top5
MobileNet 1.0 Same as Inception 66.51% 87.09%

Download the pretrained weight: OneDrive, BaiduYun

Loss



Time Benchmark

Environment: Ubuntu 16.04 LTS, Xeon E3-1231 v3, 4 Cores @ 3.40GHz, GTX1060.

TF 1.0.1(native pip install), TF 1.1.0(build from source, optimization flag '-mavx2')

Device Forward Forward-Backward Instruction set Quantized Fused-BN Remark
CPU 52ms 503ms - - - TF 1.0.1
CPU 44ms 177ms - - On TF 1.0.1
CPU 31ms - - 8-bits - TF 1.0.1
CPU 26ms 75ms AVX2 - - TF 1.1.0
CPU 128ms - AVX2 8-bits - TF 1.1.0
CPU 19ms 89ms AVX2 - On TF 1.1.0
GPU 3ms 16ms - - - TF 1.0.1, CUDA8.0, CUDNN5.1
GPU 3ms 15ms - - On TF 1.0.1, CUDA8.0, CUDNN5.1

Image Size: (224, 224, 3), Batch Size: 1

Usage

Train on Imagenet

  1. Prepare imagenet data. Please refer to Google's tutorial for training inception.

  2. Modify './script/train_mobilenet_on_imagenet.sh' according to your environment.

bash ./script/train_mobilenet_on_imagenet.sh

Benchmark speed

python ./scripts/time_benchmark.py

Train MobileNet Detector (Debugging)

  1. Prepare KITTI data.

After download KITTI data, you need to split it data into train/val set.

cd /path/to/kitti_root
mkdir ImageSets
cd ./ImageSets
ls ../training/image_2/ | grep ".png" | sed s/.png// > trainval.txt
python ./tools/kitti_random_split_train_val.py

kitti_root floder then look like below

kitti_root/
                  |->training/
                  |     |-> image_2/00****.png
                  |     L-> label_2/00****.txt
                  |->testing/
                  |     L-> image_2/00****.png
                  L->ImageSets/
                        |-> trainval.txt
                        |-> train.txt
                        L-> val.txt

Then convert it into tfrecord.

python ./tools/tf_convert_data.py
  1. Mobify './script/train_mobilenet_on_kitti.sh' according to your environment.
bash ./script/train_mobilenetdet_on_kitti.sh

The code of this subject is largely based on SqueezeDet & SSD-Tensorflow. I would appreciated if you could feed back any bug.

Trouble Shooting

  1. About the MobileNet model size

According to the paper, MobileNet has 3.3 Million Parameters, which does not vary based on the input resolution. It means that the number of final model parameters should be larger than 3.3 Million, because of the fc layer.

When using RMSprop training strategy, the checkpoint file size should be almost 3 times as large as the model size, because of some auxiliary parameters used in RMSprop. You can use the inspect_checkpoint.py to figure it out.

  1. Slim multi-gpu performance problems

#1390 #1428

TODO

  • Train on Imagenet
  • Add Width Multiplier Hyperparameters
  • Report training result
  • Intergrate into object detection task(in progress)

Reference

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

SSD-Tensorflow

SqueezeDet




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
shicai/MobileNet-Caffe: Caffe Implementation of Google's MobileNets (v1 and ...发布时间:2022-08-29
下一篇:
Minds/mobile: Minds mobile apps发布时间:2022-08-29
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap