• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

PINTO0309/TPU-MobilenetSSD: Edge TPU Accelerator / Multi-TPU + MobileNet-SSD v2 ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

PINTO0309/TPU-MobilenetSSD

开源软件地址(OpenSource Url):

https://github.com/PINTO0309/TPU-MobilenetSSD

开源编程语言(OpenSource Language):

Python 84.7%

开源软件介绍(OpenSource Introduction):

TPU-MobilenetSSD

Environment

  1. LattePanda Alpha (Ubuntu16.04) / RaspberryPi3 (Raspbian) / LaptopPC (Ubuntu16.04)
  2. Edge TPU Accelerator (Supports multi-TPU)
  3. USB Camera (Playstationeye)

My articles

1.I tested the operating speed of MobileNet-SSD v2 using Google Edge TPU Accelerator with RaspberryPi3 (USB2.0) and LaptopPC (USB3.1) (MS-COCO)

2.Structure visualization of Tensorflow Lite model files (.tflite)

3.I wanted to speed up the operation of the Edge TPU Accelerator as little as possible, so I tried to generate a .tflite of MobileNetv2-SSDLite (Pascal VOC) and compile it into a TPU model. Part 1

4.Since I wanted to speed up the operation of the Edge TPU Accelerator as little as possible, I transferred and learned MobileNetv2-SSD / MobileNetv1-SSD + MS-COCO with Pascal VOC and generated .tflite. Docker Part 2

5.Since we wanted to speed up the operation of the Edge TPU Accelerator as little as possible, I transferred and learned MS-COCO with Pascal VOC and generated .tflite, Google Colaboratory [GPU]. Part 3

6.Edge TPU Accelerator + custom model MobileNetv2-SSDLite .tflite generation 【Success】 Docker compilation Part.4

7.[150 FPS ++] Connect three Coral Edge TPU accelerators to infer parallelism and get ultra-fast object detection inference performance ーTo the extreme of useless high performanceー

LattePanda Alpha Core m3 + USB 3.0 + Google Edge TPU Accelerator + MobileNet-SSD v2 + Async mode

320x240
about 80 - 90 FPS
https://youtu.be/LERXuDXn0kY

01

LattePanda Alpha Core m3 + USB 3.0 + Google Edge TPU Accelerator + MobileNet-SSD v2 + Async mode

640x480
about 60 - 80 FPS
https://youtu.be/OFEQHCQ5MsM

02

Core i7 + USB 3.0 + Google Edge TPU Accelerator / Multi-TPUs x3 + MobileNet-SSD v2 + Async mode

320x240
about 150 FPS++
https://youtu.be/_qE9kmk8gUA

03 04

Environment construction procedure

$ curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add-
$ echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
$ sudo apt-get update
$ sudo apt-get upgrade edgetpu
$ wget https://dl.google.com/coral/edgetpu_api/edgetpu_api_latest.tar.gz -O edgetpu_api.tar.gz --trust-server-names
$ tar xzf edgetpu_api.tar.gz
$ cd edgetpu_api
$ bash ./install.sh

Usage

MobileNet-SSD-TPU-async.py -> USB camera animation and inference are asynchronous (The frame is slightly off.)
MobileNet-SSD-TPU-sync.py -> USB camera animation and inference are synchronous (The frame does not shift greatly.)

If you use USB3.0 USBHub and connect multiple TPUs, it automatically detects multiple TPUs and processes inferences in parallel at high speed.

$ git clone https://github.com/PINTO0309/TPU-MobilenetSSD.git
$ cd TPU-MobilenetSSD
$ python3 MobileNet-SSD-TPU-async.py
usage: MobileNet-SSD-TPU-async.py [-h] [--model MODEL] [--label LABEL]
                                  [--usbcamno USBCAMNO]

optional arguments:
  -h, --help           show this help message and exit
  --model MODEL        Path of the detection model.
  --label LABEL        Path of the labels file.
  --usbcamno USBCAMNO  USB Camera number.

Reference




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap