This should do it. First you can convert your correlation matrix to a covariance matrix
MyMatrix <- matrix(
c(1.0, 0.1, 0.5, 0.4,
0.1, 1.0, 0.9, 0.3,
0.5, 0.9, 1.0, 0.3,
0.4, 0.3, 0.3, 1.0),
nrow=4,
ncol=4)
rownames(MyMatrix) <- colnames(MyMatrix) <- c("a", "b","c","d")
#Assume means and standard deviations as follows:
MEAN.a <- 4.00
MEAN.b <- 3.90
MEAN.c <- 4.10
MEAN.d <- 5.00
SD.a <- 1.01
SD.b <- 0.95
SD.c <- 0.99
SD.d <- 2.20
s <- c(SD.a, SD.b, SD.c, SD.d)
m <- c(MEAN.a, MEAN.b, MEAN.c, MEAN.d)
cov.mat <- diag(s) %*% MyMatrix %*% diag(s)
rownames(cov.mat) <- colnames(cov.mat) <- rownames(MyMatrix)
names(m) <- rownames(MyMatrix)
Then, you can use lavaan
to estimate the model along the lines of the post you mentioned in your question. Note, you need to supply a number of observations to get the sample estimate. I used 100 for the example, but you may want to change it if that doesn't make sense.
library(lavaan)
m1 <- 'd ~ a + b + c'
fit <- sem(m1,
sample.cov = cov.mat,
sampl.nobs=100,
sample.mean=m
meanstructure=TRUE)
summary(fit, standardize=TRUE)
# lavaan 0.6-6 ended normally after 44 iterations
#
# Estimator ML
# Optimization method NLMINB
# Number of free parameters 5
#
# Number of observations 100
#
# Model Test User Model:
#
# Test statistic 0.000
# Degrees of freedom 0
#
# Parameter Estimates:
#
# Standard errors Standard
# Information Expected
# Information saturated (h1) model Structured
#
# Regressions:
# Estimate Std.Err z-value P(>|z|) Std.lv Std.all
# d ~
# a 6.317 0.095 66.531 0.000 6.317 2.900
# b 12.737 0.201 63.509 0.000 12.737 5.500
# c -13.556 0.221 -61.307 0.000 -13.556 -6.100
#
# Intercepts:
# Estimate Std.Err z-value P(>|z|) Std.lv Std.all
# .d -14.363 0.282 -50.850 0.000 -14.363 -6.562
#
# Variances:
# Estimate Std.Err z-value P(>|z|) Std.lv Std.all
# .d 0.096 0.014 7.071 0.000 0.096 0.020
#
#
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…