SparkR Column provides a long list of useful methods including isNull
and isNotNull
:
> people_local <- data.frame(Id=1:4, Age=c(21, 18, 30, NA))
> people <- createDataFrame(sqlContext, people_local)
> head(people)
Id Age
1 1 21
2 2 18
3 3 NA
> filter(people, isNotNull(people$Age)) %>% head()
Id Age
1 1 21
2 2 18
3 3 30
> filter(people, isNull(people$Age)) %>% head()
Id Age
1 4 NA
Please keep in mind that there is no distinction between NA
and NaN
in SparkR.
If you prefer operations on a whole data frame there is a set of NA functions including fillna
and dropna
:
> fillna(people, 99) %>% head()
Id Age
1 1 21
2 2 18
3 3 30
4 4 99
> dropna(people) %>% head()
Id Age
1 1 21
2 2 18
3 3 30
Both can be adjusted to consider only some subset of columns (cols
), and dropna
has some additional useful parameters. For example you can specify minimal number of not null columns:
> people_with_names_local <- data.frame(
Id=1:4, Age=c(21, 18, 30, NA), Name=c("Alice", NA, "Bob", NA))
> people_with_names <- createDataFrame(sqlContext, people_with_names_local)
> people_with_names %>% head()
Id Age Name
1 1 21 Alice
2 2 18 <NA>
3 3 30 Bob
4 4 NA <NA>
> dropna(people_with_names, minNonNulls=2) %>% head()
Id Age Name
1 1 21 Alice
2 2 18 <NA>
3 3 30 Bob
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…