I wrote a code for multivariate polynomial regression, I used polynomial features and transformation function from sklearn. Is it possible to make multivariate logarithmic regression?
Does sklearn have some kind of logarithmic transformation, like it has for polynomial features?
How can I write multivariate logarithmic regression in python?
This is my code for multivariate polynomial features:
import numpy as np
import pandas as pd
import math
import xlrd
from sklearn import linear_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
#Reading data from excel
data = pd.read_excel("DataSet.xls").round(2)
data_size = data.shape[0]
#print("Number of data:",data_size,"
",data.head())
def polynomial_prediction_of_future_strength(input_data, cement, blast_fur_slug,fly_ash,
water, superpl, coarse_aggr, fine_aggr, days):
variables = prediction_accuracy(input_data)[2]
results = prediction_accuracy(input_data)[3]
n = results.shape[0]
results = results.values.reshape(n,1) #reshaping the values so that variables and results have the same shape
#transforming the data into polynomial function
Poly_Regression = PolynomialFeatures(degree=2)
poly_variables = Poly_Regression.fit_transform(variables)
#accuracy of prediction(splitting the dataset on train and test)
poly_var_train, poly_var_test, res_train, res_test = train_test_split(poly_variables, results, test_size = 0.3, random_state = 4)
input_values = [cement, blast_fur_slug, fly_ash, water, superpl, coarse_aggr, fine_aggr, days]
input_values = Poly_Regression.transform([input_values]) #transforming the data for prediction in polynomial function
regression = linear_model.LinearRegression() #making the linear model
model = regression.fit(poly_var_train, res_train) #fitting polynomial data to the model
predicted_strength = regression.predict(input_values) #strength prediction
predicted_strength = round(predicted_strength[0,0], 2)
score = model.score(poly_var_test, res_test) #accuracy prediction
score = round(score*100, 2)
accuracy_info = "Accuracy of concrete class prediction: " + str(score) + " %
"
prediction_info = "Prediction of future concrete class after "+ str(days)+" days: "+ str(predicted_strength)
info = "
" + accuracy_info + prediction_info
return info
#print(polynomial_prediction_of_future_strength(data, 214.9 , 53.8, 121.9, 155.6, 9.6, 1014.3, 780.6, 7))
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…