np.roll
has to create a copy of the array each time, which is why it is (comparatively) slow. Convolution with something like scipy.ndimage.filters.convolve()
will be a bit faster, but it may still create copies (depending on the implementation).
In this particular case, we can avoid copying altogether by using numpy views and padding the original array in the beginning.
import numpy as np
def no_copy_roll(nx, ny):
phi_padded = np.zeros((ny+2, nx+2))
# these are views into different sub-arrays of phi_padded
# if two sub-array overlap, they share memory
phi_north = phi_padded[:-2, 1:-1]
phi_east = phi_padded[1:-1, 2:]
phi_south = phi_padded[2:, 1:-1]
phi_west = phi_padded[1:-1, :-2]
phi = phi_padded[1:-1, 1:-1]
do_me = np.zeros_like(phi, dtype='bool')
do_me[1:-1, 1:-1] = True
x0, y0, r0 = 40, 65, 12
x = np.arange(nx, dtype='float')[None, :]
y = np.arange(ny, dtype='float')[:, None]
rsq = (x-x0)**2 + (y-y0)**2
circle = rsq <= r0**2
phi[circle] = 1.0
do_me[circle] = False
n, nper = 100, 100
phi_hold = np.zeros((n+1, ny, nx))
phi_hold[0] = phi
for i in range(n):
for j in range(nper):
phi2 = 0.25*(phi_south +
phi_north +
phi_east +
phi_west)
phi[do_me] = phi2[do_me]
phi_hold[i+1] = phi
return phi_hold
This will cut about 35% off the time for a simple benchmark like
from original import original_roll
from mwe import no_copy_roll
import numpy as np
nx, ny = (301, 301)
arr1 = original_roll(nx, ny)
arr2 = no_copy_roll(nx, ny)
assert np.allclose(arr1, arr2)
here is my profiling result
37.685 <module> timing.py:1
├─ 22.413 original_roll original.py:4
│ ├─ 15.056 [self]
│ └─ 7.357 roll <__array_function__ internals>:2
│ └─ 7.243 roll numpycore
umeric.py:1110
│ [10 frames hidden] numpy
├─ 14.709 no_copy_roll mwe.py:4
└─ 0.393 allclose <__array_function__ internals>:2
└─ 0.393 allclose numpycore
umeric.py:2091
[2 frames hidden] numpy
0.391 isclose <__array_function__ internals>:2
└─ 0.387 isclose numpycore
umeric.py:2167
[4 frames hidden] numpy
For more elaborate stencils this approach still works, but it can get a bit unwieldy. In this case you can take a look at skimage.util.view_as_windows, which uses a variation of this trick (numpy stride tricks) to return an array that gives you cheap access to a window around each element. You will, however, have to do your own padding, and will need to take care to not create copies of the resulting array, which can get expensive fast.