There is a slight difference in the ordering of the bytecode.
(字节码的顺序略有不同。)
2 * (i * i)
:
(2 * (i * i)
:)
iconst_2
iload0
iload0
imul
imul
iadd
vs 2 * i * i
:
(vs 2 * i * i
:)
iconst_2
iload0
imul
iload0
imul
iadd
At first sight this should not make a difference;
(乍一看,这不应该有所作为;)
if anything the second version is more optimal since it uses one slot less. (如果有的话,第二个版本更优,因为它使用的一个插槽更少。)
So we need to dig deeper into the lower level (JIT) 1 .
(所以我们需要深入挖掘下层(JIT) 1 。)
Remember that JIT tends to unroll small loops very aggressively.
(请记住,JIT倾向于非常积极地展开小循环。)
Indeed we observe a 16x unrolling for the 2 * (i * i)
case: (事实上,我们观察到2 * (i * i)
情况的16倍展开:)
030 B2: # B2 B3 <- B1 B2 Loop: B2-B2 inner main of N18 Freq: 1e+006
030 addl R11, RBP # int
033 movl RBP, R13 # spill
036 addl RBP, #14 # int
039 imull RBP, RBP # int
03c movl R9, R13 # spill
03f addl R9, #13 # int
043 imull R9, R9 # int
047 sall RBP, #1
049 sall R9, #1
04c movl R8, R13 # spill
04f addl R8, #15 # int
053 movl R10, R8 # spill
056 movdl XMM1, R8 # spill
05b imull R10, R8 # int
05f movl R8, R13 # spill
062 addl R8, #12 # int
066 imull R8, R8 # int
06a sall R10, #1
06d movl [rsp + #32], R10 # spill
072 sall R8, #1
075 movl RBX, R13 # spill
078 addl RBX, #11 # int
07b imull RBX, RBX # int
07e movl RCX, R13 # spill
081 addl RCX, #10 # int
084 imull RCX, RCX # int
087 sall RBX, #1
089 sall RCX, #1
08b movl RDX, R13 # spill
08e addl RDX, #8 # int
091 imull RDX, RDX # int
094 movl RDI, R13 # spill
097 addl RDI, #7 # int
09a imull RDI, RDI # int
09d sall RDX, #1
09f sall RDI, #1
0a1 movl RAX, R13 # spill
0a4 addl RAX, #6 # int
0a7 imull RAX, RAX # int
0aa movl RSI, R13 # spill
0ad addl RSI, #4 # int
0b0 imull RSI, RSI # int
0b3 sall RAX, #1
0b5 sall RSI, #1
0b7 movl R10, R13 # spill
0ba addl R10, #2 # int
0be imull R10, R10 # int
0c2 movl R14, R13 # spill
0c5 incl R14 # int
0c8 imull R14, R14 # int
0cc sall R10, #1
0cf sall R14, #1
0d2 addl R14, R11 # int
0d5 addl R14, R10 # int
0d8 movl R10, R13 # spill
0db addl R10, #3 # int
0df imull R10, R10 # int
0e3 movl R11, R13 # spill
0e6 addl R11, #5 # int
0ea imull R11, R11 # int
0ee sall R10, #1
0f1 addl R10, R14 # int
0f4 addl R10, RSI # int
0f7 sall R11, #1
0fa addl R11, R10 # int
0fd addl R11, RAX # int
100 addl R11, RDI # int
103 addl R11, RDX # int
106 movl R10, R13 # spill
109 addl R10, #9 # int
10d imull R10, R10 # int
111 sall R10, #1
114 addl R10, R11 # int
117 addl R10, RCX # int
11a addl R10, RBX # int
11d addl R10, R8 # int
120 addl R9, R10 # int
123 addl RBP, R9 # int
126 addl RBP, [RSP + #32 (32-bit)] # int
12a addl R13, #16 # int
12e movl R11, R13 # spill
131 imull R11, R13 # int
135 sall R11, #1
138 cmpl R13, #999999985
13f jl B2 # loop end P=1.000000 C=6554623.000000
We see that there is 1 register that is "spilled" onto the stack.
(我们看到有1个寄存器被“溢出”到堆栈中。)
And for the 2 * i * i
version:
(对于2 * i * i
版本:)
05a B3: # B2 B4 <- B1 B2 Loop: B3-B2 inner main of N18 Freq: 1e+006
05a addl RBX, R11 # int
05d movl [rsp + #32], RBX # spill
061 movl R11, R8 # spill
064 addl R11, #15 # int
068 movl [rsp + #36], R11 # spill
06d movl R11, R8 # spill
070 addl R11, #14 # int
074 movl R10, R9 # spill
077 addl R10, #16 # int
07b movdl XMM2, R10 # spill
080 movl RCX, R9 # spill
083 addl RCX, #14 # int
086 movdl XMM1, RCX # spill
08a movl R10, R9 # spill
08d addl R10, #12 # int
091 movdl XMM4, R10 # spill
096 movl RCX, R9 # spill
099 addl RCX, #10 # int
09c movdl XMM6, RCX # spill
0a0 movl RBX, R9 # spill
0a3 addl RBX, #8 # int
0a6 movl RCX, R9 # spill
0a9 addl RCX, #6 # int
0ac movl RDX, R9 # spill
0af addl RDX, #4 # int
0b2 addl R9, #2 # int
0b6 movl R10, R14 # spill
0b9 addl R10, #22 # int
0bd movdl XMM3, R10 # spill
0c2 movl RDI, R14 # spill
0c5 addl RDI, #20 # int
0c8 movl RAX, R14 # spill
0cb addl RAX, #32 # int
0ce movl RSI, R14 # spill
0d1 addl RSI, #18 # int
0d4 movl R13, R14 # spill
0d7 addl R13, #24 # int
0db movl R10, R14 # spill
0de addl R10, #26 # int
0e2 movl [rsp + #40], R10 # spill
0e7 movl RBP, R14 # spill
0ea addl RBP, #28 # int
0ed imull RBP, R11 # int
0f1 addl R14, #30 # int
0f5 imull R14, [RSP + #36 (32-bit)] # int
0fb movl R10, R8 # spill
0fe addl R10, #11 # int
102 movdl R11, XMM3 # spill
107 imull R11, R10 # int
10b movl [rsp + #44], R11 # spill
110 movl R10, R8 # spill
113 addl R10, #10 # int
117 imull RDI, R10 # int
11b movl R11, R8 # spill
11e addl R11, #8 # int
122 movdl R10, XMM2 # spill
127 imull R10, R11 # int
12b movl [rsp + #48], R10 # spill
130 movl R10, R8 # spill
133 addl R10, #7 # int
137 movdl R11, XMM1 # spill
13c imull R11, R10 # int
140 movl [rsp + #52], R11 # spill
145 movl R11, R8 # spill
148 addl R11, #6 # int
14c movdl R10, XMM4 # spill
151 imull R10, R11 # int
155 movl [rsp + #56], R10 # spill
15a movl R10, R8 # spill
15d addl R10, #5 # int
161 movdl R11, XMM6 # spill
166 imull R11, R10 # int
16a movl [rsp + #60], R11 # spill
16f movl R11, R8 # spill
172 addl R11, #4 # int
176 imull RBX, R11 # int
17a movl R11, R8 # spill
17d addl R11, #3 # int
181 imull RCX, R11 # int
185 movl R10, R8 # spill
188 addl R10, #2 # int
18c imull RDX, R10 # int
190 movl R11, R8 # spill
193 incl R11 # int
196 imull R9, R11 # int
19a addl R9, [RSP + #32 (32-bit)] # int
19f addl R9, RDX # int
1a2 addl R9, RCX # int
1a5 addl R9, RBX # int
1a8 addl R9, [RSP + #60 (32-bit)] # int
1ad addl R9, [RSP + #56 (32-bit)] # int
1b2 addl R9, [RSP + #52 (32-bit)] # int
1b7 addl R9, [RSP + #48 (32-bit)] # int
1bc movl R10, R8 # spill
1bf addl R10, #9 # int
1c3 imull R10, RSI # int
1c7 addl R10, R9 # int
1ca addl R10, RDI # int
1cd addl R10, [RSP + #44 (32-bit)] # int
1d2 movl R11, R8 # spill
1d5 addl R11, #12 # int
1d9 imull R13, R11 # int
1dd addl R13, R10 # int
1e0 movl R10, R8 # spill
1e3 addl R10, #13 # int
1e7 imull R10, [RSP + #40 (32-bit)] # int
1ed addl R10, R13 # int
1f0 addl RBP, R10 # int
1f3 addl R14, RBP # int
1f6 movl R10, R8 # spill
1f9 addl R10, #16 # int
1fd cmpl R10, #999999985
204 jl B2 # loop end P=1.000000 C=7419903.000000
Here we observe much more "spilling" and more accesses to the stack [RSP + ...]
, due to more intermediate results that need to be preserved.
(在这里,我们观察到更多的“溢出”和更多访问堆栈[RSP + ...]
,因为需要保留更多的中间结果。)
Thus the answer to the question is simple: 2 * (i * i)
is faster than 2 * i * i
because the JIT generates more optimal assembly code for the first case.
(因此问题的答案很简单: 2 * (i * i)
比2 * i * i
快,因为JIT为第一种情况生成了更优的汇编代码。)
But of course it is obvious that neither the first nor the second version is any good;
(但当然很明显,第一版和第二版都没有任何好处;)
the loop could really benefit from vectorization, since any x86-64 CPU has at least SSE2 support. (循环可以真正受益于矢量化,因为任何x86-64 CPU至少具有SSE2支持。)
So it's an issue of the optimizer;
(所以这是优化器的问题;)
as is often the case, it unrolls too aggressively and shoots itself in the foot, all the while missing out on various other opportunities. (通常情况下,它会过于积极地展开并在脚下射击,一直错过各种其他机会。)
In fact, modern x86-64 CPUs break down the instructions further into micro-ops (μops) and with features like register renaming, μop caches and loop buffers, loop optimization takes a lot more finesse than a simple unrolling for optimal performance.
(实际上,现代x86-64 CPU将指令进一步分解为微操作(μops),并具有寄存器重命名,μop缓存和循环缓冲等功能,循环优化比简单展开以获得最佳性能要精细得多。)
According to Agner Fog's optimization guide : (根据Agner Fog的优化指南 :)
The gain in performance due to the μop cache can be quite considerable if the average instruction length is more than 4 bytes.
(如果平均指令长度超过4个字节,则由μop缓存引起的性能增益可能相当大。)
The following methods of optimizing the use of the μop cache may be considered: (可以考虑以下优化μop缓存使用的方法:)
- Make sure that critical loops are small enough to fit into the μop cache.
(确保关键循环足够小以适应μop缓存。)
- Align the most critical loop entries and function entries by 32.
(将最关键的循环条目和函数条目与32对齐。)
- Avoid unnecessary loop unrolling.
(避免不必要的循环展开。)
- Avoid instructions that have extra load time
(避免使用有额外加载时间的指令)
.
(。)
. (。)
. (。)
Regarding those load times - even the fastest L1D hit costs 4 cycles , an extra register and μop, so yes, even a few accesses to memory will hurt performance in tight loops.
(关于那些加载时间 - 即使最快的L1D命中也需要4个周期 ,额外的寄存器和μop,所以是的,即使是少量的内存访问也会影响紧密循环中的性能。)
But back to the vectorization opportunity - to see how fast it can be, <a href="https://stackoom.com/link/aHR0cHM6Ly9nY2M