Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
291 views
in Technique[技术] by (71.8m points)

java - 为什么2 *(i * i)比Java中的2 * i * i更快?(Why is 2 * (i * i) faster than 2 * i * i in Java?)

The following Java program takes on average between 0.50 secs and 0.55 secs to run:

(以下Java程序平均需要在0.50秒到0.55秒之间运行:)

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

If I replace 2 * (i * i) with 2 * i * i , it takes between 0.60 and 0.65 secs to run.

(如果我更换2 * (i * i)2 * i * i ,它需要0.60秒和0.65之间运行。)

How come?

(怎么会?)

I ran each version of the program 15 times, alternating between the two.

(我运行了每个版本的程序15次,在两者之间交替。)

Here are the results:

(结果如下:)

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

The fastest run of 2 * i * i took longer than the slowest run of 2 * (i * i) .

(2 * i * i的最快运行时间比2 * (i * i)的最慢运行时间长。)

If they were both as efficient, the probability of this happening would be less than 1/2^15 * 100% = 0.00305%.

(如果它们同样有效,则发生这种情况的概率将小于1/2 ^ 15 * 100%= 0.00305%。)

  ask by Stefan translate from so

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

There is a slight difference in the ordering of the bytecode.

(字节码的顺序略有不同。)

2 * (i * i) :

(2 * (i * i) :)

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

vs 2 * i * i :

(vs 2 * i * i :)

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

At first sight this should not make a difference;

(乍一看,这不应该有所作为;)

if anything the second version is more optimal since it uses one slot less.

(如果有的话,第二个版本更优,因为它使用的一个插槽更少。)

So we need to dig deeper into the lower level (JIT) 1 .

(所以我们需要深入挖掘下层(JIT) 1 。)

Remember that JIT tends to unroll small loops very aggressively.

(请记住,JIT倾向于非常积极地展开小循环。)

Indeed we observe a 16x unrolling for the 2 * (i * i) case:

(事实上,我们观察到2 * (i * i)情况的16倍展开:)

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

We see that there is 1 register that is "spilled" onto the stack.

(我们看到有1个寄存器被“溢出”到堆栈中。)

And for the 2 * i * i version:

(对于2 * i * i版本:)

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

Here we observe much more "spilling" and more accesses to the stack [RSP + ...] , due to more intermediate results that need to be preserved.

(在这里,我们观察到更多的“溢出”和更多访问堆栈[RSP + ...] ,因为需要保留更多的中间结果。)

Thus the answer to the question is simple: 2 * (i * i) is faster than 2 * i * i because the JIT generates more optimal assembly code for the first case.

(因此问题的答案很简单: 2 * (i * i)2 * i * i快,因为JIT为第一种情况生成了更优的汇编代码。)


But of course it is obvious that neither the first nor the second version is any good;

(但当然很明显,第一版和第二版都没有任何好处;)

the loop could really benefit from vectorization, since any x86-64 CPU has at least SSE2 support.

(循环可以真正受益于矢量化,因为任何x86-64 CPU至少具有SSE2支持。)

So it's an issue of the optimizer;

(所以这是优化器的问题;)

as is often the case, it unrolls too aggressively and shoots itself in the foot, all the while missing out on various other opportunities.

(通常情况下,它会过于积极地展开并在脚下射击,一直错过各种其他机会。)

In fact, modern x86-64 CPUs break down the instructions further into micro-ops (μops) and with features like register renaming, μop caches and loop buffers, loop optimization takes a lot more finesse than a simple unrolling for optimal performance.

(实际上,现代x86-64 CPU将指令进一步分解为微操作(μops),并具有寄存器重命名,μop缓存和循环缓冲等功能,循环优化比简单展开以获得最佳性能要精细得多。)

According to Agner Fog's optimization guide :

(根据Agner Fog的优化指南 :)

The gain in performance due to the μop cache can be quite considerable if the average instruction length is more than 4 bytes.

(如果平均指令长度超过4个字节,则由μop缓存引起的性能增益可能相当大。)

The following methods of optimizing the use of the μop cache may be considered:

(可以考虑以下优化μop缓存使用的方法:)

  • Make sure that critical loops are small enough to fit into the μop cache.

    (确保关键循环足够小以适应μop缓存。)

  • Align the most critical loop entries and function entries by 32.

    (将最关键的循环条目和函数条目与32对齐。)

  • Avoid unnecessary loop unrolling.

    (避免不必要的循环展开。)

  • Avoid instructions that have extra load time

    (避免使用有额外加载时间的指令)
    .

    (。)

    .

    (。)

    .

    (。)

Regarding those load times - even the fastest L1D hit costs 4 cycles , an extra register and μop, so yes, even a few accesses to memory will hurt performance in tight loops.

(关于那些加载时间 - 即使最快的L1D命中也需要4个周期 ,额外的寄存器和μop,所以是的,即使是少量的内存访问也会影响紧密循环中的性能。)

But back to the vectorization opportunity - to see how fast it can be, <a href="https://stackoom.com/link/aHR0cHM6Ly9nY2M


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...