I am trying to recreate this draggable globe from Mike Bostock using D3 but as a svg version. Due to performance issues while dragging I am re-rendering the globe. So far so good. Now I want to implement a click event but it doesn't work. Here it is mentioned that the problem might be the re-appending. A mousedown event is working fine but interferes with the dragging later on.
Why is the mousedown event working and the click event not? Hints for restructuring the code to solves this are highly appreciated.
I created a Fiddle for better understanding: Fiddle
PS. I am new to programming and D3, so please don't be too harsh :)
HTML:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>D3</title>
</head>
<body>
<div id="world"></div>
<script src="https://d3js.org/d3.v6.min.js"></script>
<script src="https://unpkg.com/topojson-client@2"></script>
</body>
</html>
JS:
let width, height
height = 150
width = 150
const projection = d3.geoOrthographic()
.scale((height - 10) / 2)
.translate([100, height / 2])
.precision(0);
let path = d3.geoPath().projection(projection)
const svg = d3.select("#world")
.append("svg")
const g = svg.append("g")
d3.json("https://cdn.jsdelivr.net/npm/world-atlas@2/countries-110m.json").then(data => {
let data1 = data
renderGlobe(data1);
})
function renderGlobe(world){
g.call(drag(projection)
.on("drag.render", ()=>render(world, true))
.on("end.render", ()=>render(world, false) ))
.call( () => render(world, false))
}
function render(world, x){
if(x){
variable = "land"
world = topojson.feature(world, world.objects.land).features;
}
else{
variable = "countries"
world = topojson.feature(world, world.objects.countries).features;
}
g.selectAll("path").remove()
g.selectAll(`${variable}`)
.data(world)
.enter().append("path")
.attr("class", `${variable}`)
.attr("d", path)
// This click event doesn't work
.on("click",()=>console.log("Do something"))
// But mousedown event works
.on("mousedown",()=>console.log("Mousedown event works"))
}
function drag(projection){
var LonLatStart, eulerStart
function dragstarted(event){
LonLatStart = projection.invert(d3.pointer(event))
eulerStart = projection.rotate()
}
var LonLatEnd, eulerEnd
function dragged(event){
LonLatEnd = projection.rotate(eulerStart).invert(d3.pointer(event))
eulerEnd = getEulerAngles(LonLatStart, eulerStart, LonLatEnd)
projection.rotate(eulerEnd)
refresh()
}
return drag = d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
}
function refresh(){
svg.selectAll("path").attr("d", path)
}
// Dragging Math
let cos = Math.cos,
acos = Math.acos,
sin = Math.sin,
asin = Math.asin,
atan2 = Math.atan2,
sqrt = Math.sqrt,
min = Math.min,
max = Math.max,
PI = Math.PI,
radians = PI / 180,
degrees = 180 / PI;
// a: original vector, b: ending vector
function crossProduct(a, b){
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
]
}
function dotProduct(a, b){
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]
}
function LengthOfVector(c){
return sqrt(c[0] * c[0] + c[1] * c[1] + c[2] * c[2])
}
function quaternionEulerFormula(a, b){
let rotationAxis = crossProduct(a,b) , normalizationFactor = sqrt(dotProduct(rotationAxis,rotationAxis))
if (!normalizationFactor) return [1, 0, 0, 0]
let theta = acos(max(-1, min(1, dotProduct(a, b))))
return [
cos(theta / 2),
sin(theta / 2) * rotationAxis[2] / normalizationFactor,
- sin(theta / 2) * rotationAxis[1] / normalizationFactor,
sin(theta / 2) * rotationAxis[0] / normalizationFactor
]
}
// returns unit quaternion from euler angles [λ, φ, γ]
function unitQuaternion(d){
var lambda = d[0] / 2 * radians, cosLambda = cos(lambda), sinLambda = sin(lambda),
phi = d[1] / 2 * radians, cosPhi = cos(phi), sinPhi = sin(phi),
gamma = d[2] / 2 * radians, cosGamma = cos(gamma), sinGamma = sin(gamma)
return [
cosLambda * cosPhi * cosGamma + sinLambda * sinPhi * sinGamma,
sinLambda * cosPhi * cosGamma - cosLambda * sinPhi * sinGamma,
cosLambda * sinPhi * cosGamma + sinLambda * cosPhi * sinGamma,
cosLambda * cosPhi * sinGamma - sinLambda * sinPhi * cosGamma,
]
}
// quaternion multiplication, returns another quaternion which represents the rotation
function quaternionMultiplication(q0 , q1){
return [
q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] - q0[3] * q1[3],
q0[0] * q1[1] + q0[1] * q1[0] + q0[2] * q1[3] - q0[3] * q1[2],
q0[0] * q1[2] - q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1],
q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0]
]
}
// converts quaternion to euler angles
function quaternion2eulerAngles(q){
return [
atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees,
//asin(2 * (q[0] * q[2] - q[3] * q[1])) * degrees,
asin(max(-1, min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees,
atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees
]
}
// converts long, lat to cartesian coordinates x,y,z
function lonlat2cartesian(e) {
let l = e[0] * radians, p = e[1] * radians, cp = cos(p);
return [cp * cos(l), cp * sin(l), sin(p)];
};
function getEulerAngles(positionLonLatStart, eulerAnglesStart, positionLonLatEnd){
let v0 = lonlat2cartesian(positionLonLatStart)
let v1 = lonlat2cartesian(positionLonLatEnd)
let quaternionEnd = quaternionMultiplication(unitQuaternion(eulerAnglesStart), quaternionEulerFormula(v0,v1))
return quaternion2eulerAngles(quaternionEnd)
}
question from:
https://stackoverflow.com/questions/65545439/d3-click-event-doesnt-work-after-re-appending-path