Set the 'datetime'
column to a datetime64[ns]
type:
- Use
pandas.to_datetime
to convert the 'datetime'
column, and remember to assign the column back to itself, because this is not an inplace update.
- Column names can be accessed with a
.
, if there are no spaces in the column header
df_google.datetime
instead of df_google['datetime']
import pandas as pd
import matplotlib.pyplot as plt
# given the following data
data = {'datetime': ['2018-05-15', '2018-05-16', '2018-05-17', '2018-05-18', '2018-05-21', '2018-05-22', '2018-05-23', '2018-05-24', '2018-05-25', '2018-05-29'],
'price': [1079.22998, 1081.77002, 1078.589966, 1066.359985, 1079.579956, 1069.72998, 1079.689941, 1079.23999, 1075.660034, 1060.319946]}
df_google = pd.DataFrame(data)
# convert the datetime column to a datetime type and assign it back to the column
df_google.datetime = pd.to_datetime(df_google.datetime)
# display(df_google.head())
datetime price
0 2018-05-15 1079.229980
1 2018-05-16 1081.770020
2 2018-05-17 1078.589966
3 2018-05-18 1066.359985
4 2018-05-21 1079.579956
5 2018-05-22 1069.729980
6 2018-05-23 1079.689941
7 2018-05-24 1079.239990
8 2018-05-25 1075.660034
9 2018-05-29 1060.319946
Verify the 'datetime'
is a datetime64[ns]
Dtype:
print(df_google.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 datetime 10 non-null datetime64[ns]
1 price 10 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 288.0 bytes
Plot:
df_google.plot(x='datetime')
plt.show()
- There's a substantial ecosystem of alternative plotting tools, but
df.plot()
is fine for getting a look at the data.
- PyViz
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…