Actually this makes testing and code easier to write.
If you have one switch statement based on an internal field you probably have the same switch in multiple places doing slightly different things. This causes problems when you add a new case as you have to update all the switch statements (if you can find them).
By using polymorphism you can use virtual functions to get the same functionality and because a new case is a new class you don't have to search your code for things that need to be checked it is all isolated for each class.
class Animal
{
public:
Noise warningNoise();
Noise pleasureNoise();
private:
AnimalType type;
};
Noise Animal::warningNoise()
{
switch(type)
{
case Cat: return Hiss;
case Dog: return Bark;
}
}
Noise Animal::pleasureNoise()
{
switch(type)
{
case Cat: return Purr;
case Dog: return Bark;
}
}
In this simple case every new animal causes requires both switch statements to be updated.
You forget one? What is the default? BANG!!
Using polymorphism
class Animal
{
public:
virtual Noise warningNoise() = 0;
virtual Noise pleasureNoise() = 0;
};
class Cat: public Animal
{
// Compiler forces you to define both method.
// Otherwise you can't have a Cat object
// All code local to the cat belongs to the cat.
};
By using polymorphism you can test the Animal class.
Then test each of the derived classes separately.
Also this allows you to ship the Animal class (Closed for alteration) as part of you binary library. But people can still add new Animals (Open for extension) by deriving new classes derived from the Animal header. If all this functionality had been captured inside the Animal class then all animals need to be defined before shipping (Closed/Closed).
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…