You can create additional dictionary with mapping:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(data['name'])
le_name_mapping = dict(zip(le.classes_, le.transform(le.classes_)))
print(le_name_mapping)
{'Tom': 0, 'Nick': 1, 'Kate': 2}
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…