I have a time series with sample of 500 size and 2 types of labels and want to construct a 1D CNN with pytorch on them:
class Simple1DCNN(torch.nn.Module):
def __init__(self):
super(Simple1DCNN, self).__init__()
self.layer1 = torch.nn.Conv1d(in_channels=50,
out_channels=20,
kernel_size=5,
stride=2)
self.act1 = torch.nn.ReLU()
self.layer2 = torch.nn.Conv1d(in_channels=20,
out_channels=10,
kernel_size=1)
self.fc1 = nn.Linear(10* 1 * 1, 2)
def forward(self, x):
x = x.view(1, 50,-1)
x = self.layer1(x)
x = self.act1(x)
x = self.layer2(x)
x = self.fc1(x)
return x
model = Simple1DCNN()
model(torch.tensor(np.random.uniform(-10, 10, 500)).float())
But got this error message:
Traceback (most recent call last):
File "so_pytorch.py", line 28, in <module>
model(torch.tensor(np.random.uniform(-10, 10, 500)).float())
File "/Users/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "so_pytorch.py", line 23, in forward
x = self.fc1(x)
File "/Users/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/Users/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 93, in forward
return F.linear(input, self.weight, self.bias)
File "/Users/lib/python3.8/site-packages/torch/nn/functional.py", line 1692, in linear
output = input.matmul(weight.t())
RuntimeError: mat1 and mat2 shapes cannot be multiplied (10x3 and 10x2)
what am I doing wrong?
question from:
https://stackoverflow.com/questions/65945996/1d-cnn-on-pytorch-mat1-and-mat2-shapes-cannot-be-multiplied-10x3-and-10x2 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…