I met an error when I use BatchNorm1d, code:
##% first I set a model
class net(nn.Module):
def __init__(self, max_len, feature_linear, rnn, input_size, hidden_size, output_dim, num__rnn_layers, bidirectional, batch_first=True, p=0.2):
super(net, self).__init__()
self.max_len = max_len
self.feature_linear = feature_linear
self.input_size = input_size
self.hidden_size = hidden_size
self.bidirectional = bidirectional
self.num_directions = 2 if bidirectional == True else 1
self.p = p
self.batch_first = batch_first
self.linear1 = nn.Linear(max_len, feature_linear)
init.kaiming_normal_(self.linear1.weight, mode='fan_in')
self.BN1 = BN(feature_linear)
def forward(self, xb, seq_len_crt):
rnn_input = torch.zeros(xb.shape[0], self.feature_linear, self.input_size)
for i in range(self.input_size):
out = self.linear1(xb[:, :, i]) # xb[:,:,i].shape:(1,34), out.shape(1,100)
out = F.relu(out) # 输入:out.shape(1,100), 输出:out.shape(1,100)
out = self.BN1(out) # 输入:out.shape(1,100),输出:out.shape(1,100)
return y_hat.squeeze(-1)
##% make the model as a function and optimize it
input_size = 5
hidden_size = 32
output_dim = 1
num_rnn_layers = 2
bidirectional = True
rnn = nn.LSTM
batch_size = batch_size
feature_linear = 60
BN = nn.BatchNorm1d
model = net(max_len, feature_linear, rnn, input_size, hidden_size, output_dim, num_rnn_layers, bidirectional, p=0.1)
loss_func = nn.MSELoss(reduction='none')
# optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
# optimizer = optim.Adam(model.parameters(), lr=0.01)
optimizer = optim.AdamW(model.parameters(), lr=0.001, weight_decay=0.05)
##% use this model to predict data
def predict(xb, model, seq_len):
# xb's shape should be (batch_size, seq_len, n_features)
if xb.ndim == 2: # suitable for both ndarray and Tensor
# add a {batch_size} dim
xb = xb[None, ]
if not isinstance(xb, torch.Tensor):
xb = torch.Tensor(xb)
return model(xb, seq_len) # xb.shape(1,34,5)
##% create training/valid/test data
seq_len_train_iter = []
for i in range(0, len(seq_len_train), batch_size):
if i + batch_size <= len(seq_len_train):
seq_len_train_iter.append(seq_len_train[i:i+batch_size])
else:
seq_len_train_iter.append(seq_len_train[i:])
seq_len_valid_iter = []
for i in range(0, len(seq_len_valid), batch_size):
if i + batch_size <= len(seq_len_valid):
seq_len_valid_iter.append(seq_len_valid[i:i+batch_size])
else:
seq_len_valid_iter.append(seq_len_valid[i:])
seq_len_test_iter = []
for i in range(0, len(seq_len_test), batch_size):
if i + batch_size <= len(seq_len_test):
seq_len_test_iter.append(seq_len_test[i:i+batch_size])
else:
seq_len_test_iter.append(seq_len_test[i:])
##% fit model
def fit(epochs, model, loss_func, optimizer, train_dl, valid_dl, valid_ds, seq_len_train_iter, seq_len_valid_iter):
train_loss_record = []
valid_loss_record = []
mean_pct_final = []
mean_abs_final = []
is_better = False
last_epoch_abs_error = 0
last_epoch_pct_error = 0
mean_pct_final_train = []
mean_abs_final_train = []
for epoch in range(epochs):
# seq_len_crt: current batch seq len
for batches, ((xb, yb), seq_len_crt) in enumerate(zip(train_dl, seq_len_train_iter)):
if isinstance(seq_len_crt, np.int64):
seq_len_crt = [seq_len_crt]
y_hat = model(xb, seq_len_crt)
packed_yb = nn.utils.rnn.pack_padded_sequence(yb, seq_len_crt, batch_first=True, enforce_sorted=False)
final_yb, input_sizes = nn.utils.rnn.pad_packed_sequence(packed_yb)
final_yb = final_yb.permute(1, 0)
# assert torch.all(torch.tensor(seq_len_crt).eq(input_sizes))
loss = loss_func(y_hat, final_yb)
batch_size_crt = final_yb.shape[0]
loss = (loss.sum(-1) / input_sizes).sum() / batch_size_crt
loss.backward()
optimizer.step()
# scheduler.step()
optimizer.zero_grad()
# print(i)
with torch.no_grad():
train_loss_record.append(loss.item())
if batches % 50 == 0 and epoch % 1 == 0:
# print(f'Epoch {epoch}, batch {i} training loss: {loss.item()}')
y_hat = predict(xb[0], model, torch.tensor([seq_len_crt[0]])).detach().numpy().squeeze() # xb[0].shape(34,5)
label = yb[0][:len(y_hat)]
# plt.ion()
plt.plot(y_hat, label='predicted')
plt.plot(label, label='label')
plt.legend(loc='upper right')
plt.title('training mode')
plt.text(len(y_hat)+1, max(y_hat.max(), label.max()), f'Epoch {epoch}, batch {batches} training loss: {loss.item()}')
plt.show()
return train_loss_record
but I met:Expected more than 1 value per channel when training, got input size torch.Size([1, 60])
the error message is:
ValueError Traceback (most recent call last)
<ipython-input-119-fb062ad3f20e> in <module>
----> 1 fit(500, model, loss_func, optimizer, train_dl, valid_dl, valid_ds, seq_len_train_iter, seq_len_valid_iter)
<ipython-input-118-2eb946c379bf> in fit(epochs, model, loss_func, optimizer, train_dl, valid_dl, valid_ds, seq_len_train_iter, seq_len_valid_iter)
38 # print(f'Epoch {epoch}, batch {i} training loss: {loss.item()}')
39
---> 40 y_hat = predict(xb[0], model, torch.tensor([seq_len_crt[0]])).detach().numpy().squeeze() # xb[0].shape(34,5)
41 label = yb[0][:len(y_hat)]
42 # plt.ion()
<ipython-input-116-28afce77e325> in predict(xb, model, seq_len)
7 if not isinstance(xb, torch.Tensor):
8 xb = torch.Tensor(xb)
----> 9 return model(xb, seq_len) # xb.shape(None,34,5)
D:Anaconda3envsLSTMlibsite-packagesorch
nmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
<ipython-input-114-3e9c30d20ed6> in forward(self, xb, seq_len_crt)
50 out = self.linear1(xb[:, :, i]) # xb[:,:,i].shape:(None,34), out.shape(None,100)
51 out = F.relu(out) # 输入:out.shape(None,100), 输出:out.shape(None,100)
---> 52 out = self.BN1(out) # 输入:out.shape(None,100),输出:out.shape(None,100)
53
54 out = self.linear2(out)
D:Anaconda3envsLSTMlibsite-packagesorch
nmodulesmodule.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
D:Anaconda3envsLSTMlibsite-packagesorch
nmodulesatchnorm.py in forward(self, input)
129 used for normalization (i.e. in eval mode when buffers are not None).
130 """
--> 131 return F.batch_norm(
132 input,
133 # If buffers are not to be tracked, ensure that they won't be updated
D:Anaconda3envsLSTMlibsite-packagesorch
nfunctional.py in batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
2052 bias=bias, training=training, momentum=momentum, eps=eps)
2053 if training:
-> 2054 _verify_batch_size(input.size())
2055
2056 return torch.batch_norm(
D:Anaconda3envsLSTMlibsite-packagesorch
nfunctional.py in _verify_batch_size(size)
2035 size_prods *= size[i + 2]
2036 if size_prods == 1:
-> 2037 raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
2038
2039
ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 60])
I have checked and I found that in out = self.BN1(out)
,out.shape = (1,60),it seems that batchsize=1 is not permitted in BatchNorm1d .But I don't know how to modify it.
question from:
https://stackoverflow.com/questions/65882526/expected-more-than-1-value-per-channel-when-training-got-input-size-torch-size