Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
315 views
in Technique[技术] by (71.8m points)

python - RuntimeError: Expected object of device type cuda but got device type cpu for argument #1 'self' in call to _thnn_conv2d_forward

I have this neural net from the repo: https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch/blob/master/darknet.py.

class Darknet(nn.Module):
    def __init__(self, cfgfile):
        super(Darknet, self).__init__()
        self.blocks = parse_cfg(cfgfile)
        self.net_info, self.module_list = create_modules(self.blocks)
        
    def forward(self, x, CUDA):
        modules = self.blocks[1:]
        outputs = {}   #We cache the outputs for the route layer
        
        write = 0
        for i, module in enumerate(modules):        
            module_type = (module["type"])
            
            if module_type == "convolutional" or module_type == "upsample":
                x = self.module_list[i](x)
    
            elif module_type == "route":
                layers = module["layers"]
                layers = [int(a) for a in layers]
    
                if (layers[0]) > 0:
                    layers[0] = layers[0] - i
    
                if len(layers) == 1:
                    x = outputs[i + (layers[0])]
    
                else:
                    if (layers[1]) > 0:
                        layers[1] = layers[1] - i
    
                    map1 = outputs[i + layers[0]]
                    map2 = outputs[i + layers[1]]
                    x = torch.cat((map1, map2), 1)
                
    
            elif  module_type == "shortcut":
                from_ = int(module["from"])
                x = outputs[i-1] + outputs[i+from_]
    
            elif module_type == 'yolo':        
                anchors = self.module_list[i][0].anchors
                #Get the input dimensions
                inp_dim = int (self.net_info["height"])
        
                #Get the number of classes
                num_classes = int (module["classes"])
        
                #Transform 
                x = x.data
                x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
                if not write:              #if no collector has been intialised. 
                    detections = x
                    write = 1
        
                else:       
                    detections = torch.cat((detections, x), 1)
        
            outputs[i] = x
        
        return detections


    def load_weights(self, weightfile):
        #Open the weights file
        fp = open(weightfile, "rb")
    
        #The first 5 values are header information 
        # 1. Major version number
        # 2. Minor Version Number
        # 3. Subversion number 
        # 4,5. Images seen by the network (during training)
        header = np.fromfile(fp, dtype = np.int32, count = 5)
        self.header = torch.from_numpy(header)
        self.seen = self.header[3]   
        
        weights = np.fromfile(fp, dtype = np.float32)
        
        ptr = 0
        for i in range(len(self.module_list)):
            module_type = self.blocks[i + 1]["type"]
    
            #If module_type is convolutional load weights
            #Otherwise ignore.
            
            if module_type == "convolutional":
                model = self.module_list[i]
                try:
                    batch_normalize = int(self.blocks[i+1]["batch_normalize"])
                except:
                    batch_normalize = 0
            
                conv = model[0]
                
                
                if (batch_normalize):
                    bn = model[1]
        
                    #Get the number of weights of Batch Norm Layer
                    num_bn_biases = bn.bias.numel()
        
                    #Load the weights
                    bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
                    ptr += num_bn_biases
        
                    bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases
        
                    bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases
        
                    bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases
        
                    #Cast the loaded weights into dims of model weights. 
                    bn_biases = bn_biases.view_as(bn.bias.data)
                    bn_weights = bn_weights.view_as(bn.weight.data)
                    bn_running_mean = bn_running_mean.view_as(bn.running_mean)
                    bn_running_var = bn_running_var.view_as(bn.running_var)
        
                    #Copy the data to model
                    bn.bias.data.copy_(bn_biases)
                    bn.weight.data.copy_(bn_weights)
                    bn.running_mean.copy_(bn_running_mean)
                    bn.running_var.copy_(bn_running_var)
                
                else:
                    #Number of biases
                    num_biases = conv.bias.numel()
                
                    #Load the weights
                    conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
                    ptr = ptr + num_biases
                
                    #reshape the loaded weights according to the dims of the model weights
                    conv_biases = conv_biases.view_as(conv.bias.data)
                
                    #Finally copy the data
                    conv.bias.data.copy_(conv_biases)
                    
                #Let us load the weights for the Convolutional layers
                num_weights = conv.weight.numel()
                
                #Do the same as above for weights
                conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
                ptr = ptr + num_weights
                
                conv_weights = conv_weights.view_as(conv.weight.data)
                conv.weight.data.copy_(conv_weights)

When I try to run inference with the module using this detector I wrote I get the above error?

import cv2
from darknet import Darknet
from util import *
from torch.autograd import Variable
import torch

class ObjectDetector:
    def __init__(self, confidence=0.5, nms_thresh=0.4, reso=416):
        
        #Load Darknet model for object detection
        print("Loading network...")
        self.model = Darknet("cfg/yolov3.cfg")
        self.model.load_weights("yolov3.weights")
        print("Network successfully loaded")

        self.model.net_info["height"] = reso
        self.inp_dim = int(self.model.net_info["height"])
        if torch.cuda.is_available():
            self.model.cuda()

        self.model.eval()

        #Set detector parameters
        self.confidence = confidence
        self.nms_thresh = nms_thresh
        self.reso = reso

        #Load class file
        self.num_classes = 80
        self.classes = load_classes("data/coco.names")

    def detect(self, img):
        img_ = prep_image(img, self.inp_dim)
    
        if torch.cuda.is_available():
            img_.cuda()

        pred = self.model(img_, torch.cuda.is_available())
        res = write_results(pred, self.confidence, self.num_classes)[:,[1,2,3,4,7]] # only take the 4 corner coordinate points and class index
    
        # Create a python list for all the objects with the format [x1,y1,x2,y2,class_name]
        objs = []
        for obj in res:
            _ = obj[:4].tolist()
            _.append(self.classes[int(obj[4])])
            objs.append(_)

        return objs

if __name__=="__main__":
    detector = ObjectDetector()
    img = cv2.imread(input("Input image path: "))
    detector.detect(img)

Can anyone help me find the problem, because I can't see it. I set up an issue on the repo but there hasn't been a reply so if someone here can help, that would be great.

This is the full error trace:

Traceback (most recent call last):
  File "engine.py", line 133, in <module>
    system.run()
  File "engine.py", line 107, in run
    res = self.detector.detect(img)
  File "/home/greatman/code/vics/describe/detector.py", line 39, in detect
    pred = self.model(img_, torch.cuda.is_available())
  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/home/greatman/code/vics/describe/darknet.py", line 171, in forward
    x = self.module_list[i](x)
  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)

  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/container.py", line 117, in forward
    input = module(input)
  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 423, in forward
    return self._conv_forward(input, self.weight)
  File "/home/greatman/.local/lib/python3.6/site-packages/torch/nn/modules/conv.py", line 420, in _conv_forward
    self.padding, self.dilation, self.groups)
RuntimeError: Expected object of device type cuda but got device type cpu for argument #1 'self' in call to _thnn_conv2d_forward
question from:https://stackoverflow.com/questions/65859713/runtimeerror-expected-object-of-device-type-cuda-but-got-device-type-cpu-for-ar

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Calling .cuda() on a tensor will return a copy of that object in CUDA memory (if it's not already present there). However it won't change the memory location of the tensor it was called onto. Unlike nn.Modules where model.cuda() will suffice, you need to assign it back img = img.cuda().

>>> x = torch.rand(1)
>>> x.cuda()

>>> x.is_cuda
False

versus

>>> x = torch.rand(1)
>>> x = x.cuda()

>>> x.is_cuda
True

Therefore, in your code, you should make the following change:

    if torch.cuda.is_available():
        img_ = img_.cuda()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...