From this post:
from numpy.lib.stride_tricks import as_strided
def strided_app(a, L, S ): # Window len = L, Stride len/stepsize = S
nrows = ((a.size-L)//S)+1
n = a.strides[0]
return np.lib.stride_tricks.as_strided(a, shape=(nrows,L), strides=(S*n,n))
list_= np.array([457.334015,424.440002,394.795990,408.903992,398.821014,402.152008,435.790985,423.204987,411.574005,
404.424988,399.519989,377.181000,375.467010,386.944000,383.614990,375.071991,359.511993,328.865997,
320.510010,330.079010,336.187012,352.940002,365.026001,361.562012,362.299011,378.549011,390.414001,
400.869995,394.773010,382.556000])
np.std(strided_app(list_, 3, 1), axis=1)
However, this code does not delete any elements from the array. Also, keep in mind that the function used here comes with a warning from the numpy docs!
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…