As mentioned by David Anderson Spark provides pivot
function since version 1.6. General syntax looks as follows:
df
.groupBy(grouping_columns)
.pivot(pivot_column, [values])
.agg(aggregate_expressions)
Usage examples using nycflights13
and csv
format:
Python:
from pyspark.sql.functions import avg
flights = (sqlContext
.read
.format("csv")
.options(inferSchema="true", header="true")
.load("flights.csv")
.na.drop())
flights.registerTempTable("flights")
sqlContext.cacheTable("flights")
gexprs = ("origin", "dest", "carrier")
aggexpr = avg("arr_delay")
flights.count()
## 336776
%timeit -n10 flights.groupBy(*gexprs ).pivot("hour").agg(aggexpr).count()
## 10 loops, best of 3: 1.03 s per loop
Scala:
val flights = sqlContext
.read
.format("csv")
.options(Map("inferSchema" -> "true", "header" -> "true"))
.load("flights.csv")
flights
.groupBy($"origin", $"dest", $"carrier")
.pivot("hour")
.agg(avg($"arr_delay"))
Java:
import static org.apache.spark.sql.functions.*;
import org.apache.spark.sql.*;
Dataset<Row> df = spark.read().format("csv")
.option("inferSchema", "true")
.option("header", "true")
.load("flights.csv");
df.groupBy(col("origin"), col("dest"), col("carrier"))
.pivot("hour")
.agg(avg(col("arr_delay")));
R / SparkR:
library(magrittr)
flights <- read.df("flights.csv", source="csv", header=TRUE, inferSchema=TRUE)
flights %>%
groupBy("origin", "dest", "carrier") %>%
pivot("hour") %>%
agg(avg(column("arr_delay")))
R / sparklyr
library(dplyr)
flights <- spark_read_csv(sc, "flights", "flights.csv")
avg.arr.delay <- function(gdf) {
expr <- invoke_static(
sc,
"org.apache.spark.sql.functions",
"avg",
"arr_delay"
)
gdf %>% invoke("agg", expr, list())
}
flights %>%
sdf_pivot(origin + dest + carrier ~ hour, fun.aggregate=avg.arr.delay)
SQL:
Note that PIVOT keyword in Spark SQL is supported starting from version 2.4.
CREATE TEMPORARY VIEW flights
USING csv
OPTIONS (header 'true', path 'flights.csv', inferSchema 'true') ;
SELECT * FROM (
SELECT origin, dest, carrier, arr_delay, hour FROM flights
) PIVOT (
avg(arr_delay)
FOR hour IN (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)
);
Example data:
"year","month","day","dep_time","sched_dep_time","dep_delay","arr_time","sched_arr_time","arr_delay","carrier","flight","tailnum","origin","dest","air_time","distance","hour","minute","time_hour"
2013,1,1,517,515,2,830,819,11,"UA",1545,"N14228","EWR","IAH",227,1400,5,15,2013-01-01 05:00:00
2013,1,1,533,529,4,850,830,20,"UA",1714,"N24211","LGA","IAH",227,1416,5,29,2013-01-01 05:00:00
2013,1,1,542,540,2,923,850,33,"AA",1141,"N619AA","JFK","MIA",160,1089,5,40,2013-01-01 05:00:00
2013,1,1,544,545,-1,1004,1022,-18,"B6",725,"N804JB","JFK","BQN",183,1576,5,45,2013-01-01 05:00:00
2013,1,1,554,600,-6,812,837,-25,"DL",461,"N668DN","LGA","ATL",116,762,6,0,2013-01-01 06:00:00
2013,1,1,554,558,-4,740,728,12,"UA",1696,"N39463","EWR","ORD",150,719,5,58,2013-01-01 05:00:00
2013,1,1,555,600,-5,913,854,19,"B6",507,"N516JB","EWR","FLL",158,1065,6,0,2013-01-01 06:00:00
2013,1,1,557,600,-3,709,723,-14,"EV",5708,"N829AS","LGA","IAD",53,229,6,0,2013-01-01 06:00:00
2013,1,1,557,600,-3,838,846,-8,"B6",79,"N593JB","JFK","MCO",140,944,6,0,2013-01-01 06:00:00
2013,1,1,558,600,-2,753,745,8,"AA",301,"N3ALAA","LGA","ORD",138,733,6,0,2013-01-01 06:00:00
Performance considerations:
Generally speaking pivoting is an expensive operation.
Related questions: