Concatenating the querysets into a list is the simplest approach. If the database will be hit for all querysets anyway (e.g. because the result needs to be sorted), this won't add further cost.
from itertools import chain
result_list = list(chain(page_list, article_list, post_list))
Using itertools.chain
is faster than looping each list and appending elements one by one, since itertools
is implemented in C. It also consumes less memory than converting each queryset into a list before concatenating.
Now it's possible to sort the resulting list e.g. by date (as requested in hasen j's comment to another answer). The sorted()
function conveniently accepts a generator and returns a list:
result_list = sorted(
chain(page_list, article_list, post_list),
key=lambda instance: instance.date_created)
If you're using Python 2.4 or later, you can use attrgetter
instead of a lambda. I remember reading about it being faster, but I didn't see a noticeable speed difference for a million item list.
from operator import attrgetter
result_list = sorted(
chain(page_list, article_list, post_list),
key=attrgetter('date_created'))
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…