In CLP(FD), we frequently need to state: "This is a list of integers and finite domain variables in (sometimes: strictly) ascending/descending order."
Is there any CLP(FD) system that provides a general (parametrisable) built-in constraint for this task?
SWI-Prolog provides a constraint called chain/2
, which is similar to what I am looking for. However, the name is slightly too specific to encompass all relations that the constraint can describe (example: #<
is not a partial order but admissible in chain/2
, leading to the sequence — taken as a set of integers — no longer counting as a chain as defined in mathematical order-theory). Hence, the name does not fully describe what the constraint actually implements.
Please give the most general definition with respect to the usual binary CLP(FD) constraints — or a suitable subset that contains at least #<
, #>
, #=<
and #>=
— including the proper name according to the algebraic structure the constraint defines. The condition imposed is that the constraint describe an actual mathematical structure that has a proper name in the literature.
As a start, consider with SICStus Prolog or SWI:
:- use_module(library(clpfd)).
connex(Relation_2, List) :-
connex_relation(Relation_2),
connex_(List, Relation_2).
connex_relation(#=).
connex_relation(#<).
connex_relation(#=<).
connex_relation(#>).
connex_relation(#>=).
connex_([], _).
connex_([L|Ls], Relation_2) :-
foldl(adjacent(Relation_2), Ls, L, _).
adjacent(Relation_2, X, Prev, X) :- call(Relation_2, Prev, X).
Sample cases:
?- connex(#<, [A,B,C]).
A#=<B+-1,
B#=<C+-1.
?- connex(#=, [A,B,C]).
A = B, B = C,
C in inf..sup.
?- maplist(connex(#<), [[A,B],[C,D]]).
A#=<B+-1,
C#=<D+-1.
Notice that it would even be admissible to allow #=
, because the relation would still describe a connex as known in mathematical order-theory. Hence, the code above is not most general with respect to the usual binary CLP(FD) constraints.
Question&Answers:
os