I was presented with this problem about a year ago when it came to looking up user entered information about a oil rig in a database of miscellaneous information. The goal was to do some sort of fuzzy string search that could identify the database entry with the most common elements.
Part of the research involved implementing the Levenshtein distance algorithm, which determines how many changes must be made to a string or phrase to turn it into another string or phrase.
The implementation I came up with was relatively simple, and involved a weighted comparison of the length of the two phrases, the number of changes between each phrase, and whether each word could be found in the target entry.
The article is on a private site so I'll do my best to append the relevant contents here:
Fuzzy String Matching is the process of performing a human-like estimation of the similarity of two words or phrases. In many cases, it involves identifying words or phrases which are most similar to each other. This article describes an in-house solution to the fuzzy string matching problem and its usefulness in solving a variety of problems which can allow us to automate tasks which previously required tedious user involvement.
Introduction
The need to do fuzzy string matching originally came about while developing the Gulf of Mexico Validator tool. What existed was a database of known gulf of Mexico oil rigs and platforms, and people buying insurance would give us some badly typed out information about their assets and we had to match it to the database of known platforms. When there was very little information given, the best we could do is rely on an underwriter to "recognize" the one they were referring to and call up the proper information. This is where this automated solution comes in handy.
I spent a day researching methods of fuzzy string matching, and eventually stumbled upon the very useful Levenshtein distance algorithm on Wikipedia.
Implementation
After reading about the theory behind it, I implemented and found ways to optimize it. This is how my code looks like in VBA:
'Calculate the Levenshtein Distance between two strings (the number of insertions,
'deletions, and substitutions needed to transform the first string into the second)
Public Function LevenshteinDistance(ByRef S1 As String, ByVal S2 As String) As Long
Dim L1 As Long, L2 As Long, D() As Long 'Length of input strings and distance matrix
Dim i As Long, j As Long, cost As Long 'loop counters and cost of substitution for current letter
Dim cI As Long, cD As Long, cS As Long 'cost of next Insertion, Deletion and Substitution
L1 = Len(S1): L2 = Len(S2)
ReDim D(0 To L1, 0 To L2)
For i = 0 To L1: D(i, 0) = i: Next i
For j = 0 To L2: D(0, j) = j: Next j
For j = 1 To L2
For i = 1 To L1
cost = Abs(StrComp(Mid$(S1, i, 1), Mid$(S2, j, 1), vbTextCompare))
cI = D(i - 1, j) + 1
cD = D(i, j - 1) + 1
cS = D(i - 1, j - 1) + cost
If cI <= cD Then 'Insertion or Substitution
If cI <= cS Then D(i, j) = cI Else D(i, j) = cS
Else 'Deletion or Substitution
If cD <= cS Then D(i, j) = cD Else D(i, j) = cS
End If
Next i
Next j
LevenshteinDistance = D(L1, L2)
End Function
Simple, speedy, and a very useful metric. Using this, I created two separate metrics for evaluating the similarity of two strings. One I call "valuePhrase" and one I call "valueWords". valuePhrase is just the Levenshtein distance between the two phrases, and valueWords splits the string into individual words, based on delimiters such as spaces, dashes, and anything else you'd like, and compares each word to each other word, summing up the shortest Levenshtein distance connecting any two words. Essentially, it measures whether the information in one 'phrase' is really contained in another, just as a word-wise permutation. I spent a few days as a side project coming up with the most efficient way possible of splitting a string based on delimiters.
valueWords, valuePhrase, and Split function:
Public Function valuePhrase#(ByRef S1$, ByRef S2$)
valuePhrase = LevenshteinDistance(S1, S2)
End Function
Public Function valueWords#(ByRef S1$, ByRef S2$)
Dim wordsS1$(), wordsS2$()
wordsS1 = SplitMultiDelims(S1, " _-")
wordsS2 = SplitMultiDelims(S2, " _-")
Dim word1%, word2%, thisD#, wordbest#
Dim wordsTotal#
For word1 = LBound(wordsS1) To UBound(wordsS1)
wordbest = Len(S2)
For word2 = LBound(wordsS2) To UBound(wordsS2)
thisD = LevenshteinDistance(wordsS1(word1), wordsS2(word2))
If thisD < wordbest Then wordbest = thisD
If thisD = 0 Then GoTo foundbest
Next word2
foundbest:
wordsTotal = wordsTotal + wordbest
Next word1
valueWords = wordsTotal
End Function
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' SplitMultiDelims
' This function splits Text into an array of substrings, each substring
' delimited by any character in DelimChars. Only a single character
' may be a delimiter between two substrings, but DelimChars may
' contain any number of delimiter characters. It returns a single element
' array containing all of text if DelimChars is empty, or a 1 or greater
' element array if the Text is successfully split into substrings.
' If IgnoreConsecutiveDelimiters is true, empty array elements will not occur.
' If Limit greater than 0, the function will only split Text into 'Limit'
' array elements or less. The last element will contain the rest of Text.
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Function SplitMultiDelims(ByRef Text As String, ByRef DelimChars As String, _
Optional ByVal IgnoreConsecutiveDelimiters As Boolean = False, _
Optional ByVal Limit As Long = -1) As String()
Dim ElemStart As Long, N As Long, M As Long, Elements As Long
Dim lDelims As Long, lText As Long
Dim Arr() As String
lText = Len(Text)
lDelims = Len(DelimChars)
If lDelims = 0 Or lText = 0 Or Limit = 1 Then
ReDim Arr(0 To 0)
Arr(0) = Text
SplitMultiDelims = Arr
Exit Function
End If
ReDim Arr(0 To IIf(Limit = -1, lText - 1, Limit))
Elements = 0: ElemStart = 1
For N = 1 To lText
If InStr(DelimChars, Mid(Text, N, 1)) Then
Arr(Elements) = Mid(Text, ElemStart, N - ElemStart)
If IgnoreConsecutiveDelimiters Then
If Len(Arr(Elements)) > 0 Then Elements = Elements + 1
Else
Elements = Elements + 1
End If
ElemStart = N + 1
If Elements + 1 = Limit Then Exit For
End If
Next N
'Get the last token terminated by the end of the string into the array
If ElemStart <= lText Then Arr(Elements) = Mid(Text, ElemStart)
'Since the end of string counts as the terminating delimiter, if the last character
'was also a delimiter, we treat the two as consecutive, and so ignore the last elemnent
If IgnoreConsecutiveDelimiters Then If Len(Arr(Elements)) = 0 Then Elements = Elements - 1
ReDim Preserve Arr(0 To Elements) 'Chop off unused array elements
SplitMultiDelims = Arr
End Function
Measures of Similarity
Using these two metrics, and a third which simply computes the distance between two strings, I have a series of variables which I can run an optimization algorithm to achieve the greatest number of matches. Fuzzy string matching is, itself, a fuzzy science, and so by creating linearly independent metrics for measuring string similarity, and having a known set of strings we wish to match to each other, we can find the parameters that, for our specific styles of strings, give the best fuzzy match results.
Initially, the goal of the metric was to have a low search value for for an exact match, and increasing search values for increasingly permuted measures. In an impractical case, this was fairly easy to define using a set of well defined permutations, and engineering the final formula such that they had increasing search values results as desired.
In the above screenshot, I tweaked my heuristic to come up with something that I felt scaled nicely to my perceived difference between the search term and result. The heuristic I used for Value Phrase
in the above spreadsheet was =valuePhrase(A2,B2)-0.8*ABS(LEN(B2)-LEN(A2))
. I was effectively reducing the penalty of the Levenstein distance by 80% of the difference in the length of the two "phrases". This way, "phrases" that have the same length suffer the full penalty, but "phrases" which contain 'additional information' (longer) but aside from that still mostly share the same characters suffer a reduced penalty. I used the Value Words
function as is, and then my final SearchVal
heuristic was defined as =MIN(D2,E2)*0.8+MAX(D2,E2)*0.2
- a weighted average. Whichever of the two scores was lower got weighted 80%, and 20% of the higher score. This was just a heuristic that suited my use case to get a good match rate. These weights are something that one could then tweak to get the best match rate with their test data.
As you can see, the last two metrics, which are fuzzy string matching metrics, already have a natural tendency to give low scores to strings that are meant to match (down the diagonal). This is very good.
Application
To allow the optimization of fuzzy matching, I weight each metric. As such, every application of fuzzy string match can weight the parameters differently. The formula that defines the final score is a simply combination of the metrics and their weights:
value = Min(phraseWeight*phraseValue, wordsWeight*wordsValue)*minWeight
+ Max(phraseWeight*phraseValue, wordsWeight*wordsValue)*maxWeight
+ lengthWeight*lengthValue
Using an optimization algorithm (neural network is best here because it is a discrete, multi-dimentional problem), the goal is now to maximize the number of matches. I created a function that detects the number of correct matches of each set to each other, as can be seen in this final screenshot. A column or row gets a point if the lowest score is assigned the the string that was meant to be matched, and partial points are given if there is a tie for the lowest score, and the correct match is among the tied matched strings. I then optimized it. You can see that a green cell is the column that best matches the current row, and a blue square around the cell is the row that best matches the current column. The score in the bottom corner is roughly the number of successful matches and this is what we tell our optimization problem to maximize.
The algorithm was a wonderful success, and the solution parameters say a lot about this type of problem. You'll notice the optimized score was 44, and the best p