Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
127 views
in Technique[技术] by (71.8m points)

python - Pandas: Adding new column to dataframe which is a copy of the index column

I have a dataframe which I want to plot with matplotlib, but the index column is the time and I cannot plot it.

This is the dataframe (df3):

enter image description here

but when I try the following:

plt.plot(df3['magnetic_mag mean'], df3['YYYY-MO-DD HH-MI-SS_SSS'], label='FDI')

I'm getting an error obviously:

KeyError: 'YYYY-MO-DD HH-MI-SS_SSS'

So what I want to do is to add a new extra column to my dataframe (named 'Time) which is just a copy of the index column.

How can I do it?

This is the entire code:

#Importing the csv file into df
df = pd.read_csv('university2.csv', sep=";", skiprows=1)

#Changing datetime
df['YYYY-MO-DD HH-MI-SS_SSS'] = pd.to_datetime(df['YYYY-MO-DD HH-MI-SS_SSS'], 
                                               format='%Y-%m-%d %H:%M:%S:%f')

#Set index from column
df = df.set_index('YYYY-MO-DD HH-MI-SS_SSS')

#Add Magnetic Magnitude Column
df['magnetic_mag'] = np.sqrt(df['MAGNETIC FIELD X (μT)']**2 + df['MAGNETIC FIELD Y (μT)']**2 + df['MAGNETIC FIELD Z (μT)']**2)

#Subtract Earth's Average Magnetic Field from 'magnetic_mag'
df['magnetic_mag'] = df['magnetic_mag'] - 30

#Copy interesting values
df2 = df[[ 'ATMOSPHERIC PRESSURE (hPa)',
          'TEMPERATURE (C)', 'magnetic_mag']].copy()

#Hourly Average and Standard Deviation for interesting values 
df3 = df2.resample('H').agg(['mean','std'])
df3.columns = [' '.join(col) for col in df3.columns]

df3.reset_index()
plt.plot(df3['magnetic_mag mean'], df3['YYYY-MO-DD HH-MI-SS_SSS'], label='FDI')  

Thank you !!

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I think you need reset_index:

df3 = df3.reset_index()

Possible solution, but I think inplace is not good practice, check this and this:

df3.reset_index(inplace=True)

But if you need new column, use:

df3['new'] = df3.index

I think you can read_csv better:

df = pd.read_csv('university2.csv', 
                 sep=";", 
                 skiprows=1,
                 index_col='YYYY-MO-DD HH-MI-SS_SSS',
                 parse_dates='YYYY-MO-DD HH-MI-SS_SSS') #if doesnt work, use pd.to_datetime

And then omit:

#Changing datetime
df['YYYY-MO-DD HH-MI-SS_SSS'] = pd.to_datetime(df['YYYY-MO-DD HH-MI-SS_SSS'], 
                                               format='%Y-%m-%d %H:%M:%S:%f')
#Set index from column
df = df.set_index('YYYY-MO-DD HH-MI-SS_SSS')

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...