Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
332 views
in Technique[技术] by (71.8m points)

python - Generate random numbers summing to a predefined value

So here is the deal: I want to (for example) generate 4 pseudo-random numbers, that when added together would equal 40. How could this be dome in python? I could generate a random number 1-40, then generate another number between 1 and the remainder,etc, but then the first number would have a greater chance of "grabbing" more.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Here's the standard solution. It's similar to Laurence Gonsalves' answer, but has two advantages over that answer.

  1. It's uniform: each combination of 4 positive integers adding up to 40 is equally likely to come up with this scheme.

and

  1. it's easy to adapt to other totals (7 numbers adding up to 100, etc.)
import random

def constrained_sum_sample_pos(n, total):
    """Return a randomly chosen list of n positive integers summing to total.
    Each such list is equally likely to occur."""

    dividers = sorted(random.sample(range(1, total), n - 1))
    return [a - b for a, b in zip(dividers + [total], [0] + dividers)]

Sample outputs:

>>> constrained_sum_sample_pos(4, 40)
[4, 4, 25, 7]
>>> constrained_sum_sample_pos(4, 40)
[9, 6, 5, 20]
>>> constrained_sum_sample_pos(4, 40)
[11, 2, 15, 12]
>>> constrained_sum_sample_pos(4, 40)
[24, 8, 3, 5]

Explanation: there's a one-to-one correspondence between (1) 4-tuples (a, b, c, d) of positive integers such that a + b + c + d == 40, and (2) triples of integers (e, f, g) with 0 < e < f < g < 40, and it's easy to produce the latter using random.sample. The correspondence is given by (e, f, g) = (a, a + b, a + b + c) in one direction, and (a, b, c, d) = (e, f - e, g - f, 40 - g) in the reverse direction.

If you want nonnegative integers (i.e., allowing 0) instead of positive ones, then there's an easy transformation: if (a, b, c, d) are nonnegative integers summing to 40 then (a+1, b+1, c+1, d+1) are positive integers summing to 44, and vice versa. Using this idea, we have:

def constrained_sum_sample_nonneg(n, total):
    """Return a randomly chosen list of n nonnegative integers summing to total.
    Each such list is equally likely to occur."""

    return [x - 1 for x in constrained_sum_sample_pos(n, total + n)]

Graphical illustration of constrained_sum_sample_pos(4, 10), thanks to @FM. (Edited slightly.)

0 1 2 3 4 5 6 7 8 9 10  # The universe.
|                    |  # Place fixed dividers at 0, 10.
|   |     |       |  |  # Add 4 - 1 randomly chosen dividers in [1, 9]
  a    b      c    d    # Compute the 4 differences: 2 3 4 1

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...