Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
92 views
in Technique[技术] by (71.8m points)

python - Apply pandas function to column to create multiple new columns?

How to do this in pandas:

I have a function extract_text_features on a single text column, returning multiple output columns. Specifically, the function returns 6 values.

The function works, however there doesn't seem to be any proper return type (pandas DataFrame/ numpy array/ Python list) such that the output can get correctly assigned df.ix[: ,10:16] = df.textcol.map(extract_text_features)

So I think I need to drop back to iterating with df.iterrows(), as per this?

UPDATE: Iterating with df.iterrows() is at least 20x slower, so I surrendered and split out the function into six distinct .map(lambda ...) calls.

UPDATE 2: this question was asked back around v0.11.0. Hence much of the question and answers are not too relevant.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I usually do this using zip:

>>> df = pd.DataFrame([[i] for i in range(10)], columns=['num'])
>>> df
    num
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9

>>> def powers(x):
>>>     return x, x**2, x**3, x**4, x**5, x**6

>>> df['p1'], df['p2'], df['p3'], df['p4'], df['p5'], df['p6'] = 
>>>     zip(*df['num'].map(powers))

>>> df
        num     p1      p2      p3      p4      p5      p6
0       0       0       0       0       0       0       0
1       1       1       1       1       1       1       1
2       2       2       4       8       16      32      64
3       3       3       9       27      81      243     729
4       4       4       16      64      256     1024    4096
5       5       5       25      125     625     3125    15625
6       6       6       36      216     1296    7776    46656
7       7       7       49      343     2401    16807   117649
8       8       8       64      512     4096    32768   262144
9       9       9       81      729     6561    59049   531441

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...