No, the difference between stack and heap isn't performance. It's lifespan: any local variable inside a function (anything you do not malloc() or new) lives on the stack. It goes away when you return from the function. If you want something to live longer than the function that declared it, you must allocate it on the heap.
class Thingy;
Thingy* foo( )
{
int a; // this int lives on the stack
Thingy B; // this thingy lives on the stack and will be deleted when we return from foo
Thingy *pointerToB = &B; // this points to an address on the stack
Thingy *pointerToC = new Thingy(); // this makes a Thingy on the heap.
// pointerToC contains its address.
// this is safe: C lives on the heap and outlives foo().
// Whoever you pass this to must remember to delete it!
return pointerToC;
// this is NOT SAFE: B lives on the stack and will be deleted when foo() returns.
// whoever uses this returned pointer will probably cause a crash!
return pointerToB;
}
For a clearer understanding of what the stack is, come at it from the other end -- rather than try to understand what the stack does in terms of a high level language, look up "call stack" and "calling convention" and see what the machine really does when you call a function. Computer memory is just a series of addresses; "heap" and "stack" are inventions of the compiler.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…