The easiest way is to pickle it using to_pickle
:
df.to_pickle(file_name) # where to save it, usually as a .pkl
Then you can load it back using:
df = pd.read_pickle(file_name)
Note: before 0.11.1 save
and load
were the only way to do this (they are now deprecated in favor of to_pickle
and read_pickle
respectively).
Another popular choice is to use HDF5 (pytables) which offers very fast access times for large datasets:
import pandas as pd
store = pd.HDFStore('store.h5')
store['df'] = df # save it
store['df'] # load it
More advanced strategies are discussed in the cookbook.
Since 0.13 there's also msgpack which may be be better for interoperability, as a faster alternative to JSON, or if you have python object/text-heavy data (see this question).
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…