Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.1k views
in Technique[技术] by (71.8m points)

python - Reversing 'one-hot' encoding in Pandas

I want to go from this data frame which is basically one hot encoded.

 In [2]: pd.DataFrame({"monkey":[0,1,0],"rabbit":[1,0,0],"fox":[0,0,1]})

    Out[2]:
       fox  monkey  rabbit
    0    0       0       1
    1    0       1       0
    2    1       0       0
    3    0       0       0
    4    0       0       0

To this one which is 'reverse' one-hot encoded.

    In [3]: pd.DataFrame({"animal":["monkey","rabbit","fox"]})
    Out[3]:
       animal
    0  monkey
    1  rabbit
    2     fox

I imagine there's some sort of clever use of apply or zip to do thins but I'm not sure how... Can anyone help?

I've not had much success using indexing etc to try to solve this problem.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

UPDATE: i think ayhan is right and it should be:

df.idxmax(axis=1)

Demo:

In [40]: s = pd.Series(['dog', 'cat', 'dog', 'bird', 'fox', 'dog'])

In [41]: s
Out[41]:
0     dog
1     cat
2     dog
3    bird
4     fox
5     dog
dtype: object

In [42]: pd.get_dummies(s)
Out[42]:
   bird  cat  dog  fox
0   0.0  0.0  1.0  0.0
1   0.0  1.0  0.0  0.0
2   0.0  0.0  1.0  0.0
3   1.0  0.0  0.0  0.0
4   0.0  0.0  0.0  1.0
5   0.0  0.0  1.0  0.0

In [43]: pd.get_dummies(s).idxmax(1)
Out[43]:
0     dog
1     cat
2     dog
3    bird
4     fox
5     dog
dtype: object

OLD answer: (most probably, incorrect answer)

try this:

In [504]: df.idxmax().reset_index().rename(columns={'index':'animal', 0:'idx'})
Out[504]:
   animal  idx
0     fox    2
1  monkey    1
2  rabbit    0

data:

In [505]: df
Out[505]:
   fox  monkey  rabbit
0    0       0       1
1    0       1       0
2    1       0       0
3    0       0       0
4    0       0       0

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...